Submission #69854

#TimeUsernameProblemLanguageResultExecution timeMemory
69854BenqSparklers (JOI17_sparklers)C++14
50 / 100
92 ms2804 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 100001; int N,K,T,mid; vi X; bool ok[1000][1000][2]; // k = 0: // X[i-1]+t*mid // currently at X[i]+t*mid // X[j]-t*mid // X[j+1]-t*mid bool OK() { F0Rd(i,K+1) FOR(j,K,N) F0R(k,2) ok[i][j][k] = 0; ok[K][K][0] = ok[K][K][1] = 1; F0Rd(i,K+1) FOR(j,K,N) { ld dis = (ld)(j-i+1)*T*2*mid; if (dis >= X[j]-X[i]) { ok[i][j][0] |= ok[i][j][1]; ok[i][j][1] |= ok[i][j][0]; } if (i && dis >= X[j]-X[i-1]) ok[i-1][j][0] |= ok[i][j][0]; if (j < N-1 && dis >= X[j+1]-X[i]) ok[i][j+1][1] |= ok[i][j][1]; } return ok[0][N-1][0] || ok[0][N-1][1]; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> N >> K >> T; X.resize(N); K--; F0R(i,N) cin >> X[i]; int lo = 0, hi = 1000000000; while (lo < hi) { mid = (lo+hi)/2; if (OK()) hi = mid; else lo = mid+1; } cout << lo; } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds * if you have no idea just guess the appropriate well-known algo instead of doing nothing :/ */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...