제출 #69853

#제출 시각아이디문제언어결과실행 시간메모리
69853BenqSparklers (JOI17_sparklers)C++14
0 / 100
3 ms844 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 100001; int N,K,T,mid; vi X; ld dp[1000][1000][2]; void mn(ld& a, ld b) { a = min(a,b); } ld getTi(ld a, ld b) { return (b-a)/2/mid; } // k = 0: // X[i-1]+t*mid // currently at X[i]+t*mid // X[j]-t*mid // X[j+1]-t*mid void balance(int i, int j) { ld t = dp[i][j][0], lef = (ld)(j-i+1)*T-t; if (t < INF && lef >= getTi(X[i]+t*mid,X[j]-t*mid)) mn(dp[i][j][1],t+getTi(X[i]+t*mid,X[j]-t*mid)); t = dp[i][j][1], lef = (ld)(j-i+1)*T-t; if (t < INF && lef >= getTi(X[i]+t*mid,X[j]-t*mid)) mn(dp[i][j][0],t+getTi(X[i]+t*mid,X[j]-t*mid)); } void ad(int i, int j) { ld t = dp[i][j][0], lef = (ld)(j-i+1)*T-t; if (t < INF && i && lef >= getTi(X[i-1],X[i])) mn(dp[i-1][j][0],dp[i][j][0]+getTi(X[i-1],X[i])); t = dp[i][j][1], lef = (ld)(j-i+1)*T-t; if (t < INF && j < N-1 && lef >= getTi(X[j],X[j+1])) mn(dp[i][j+1][1],dp[i][j][1]+getTi(X[j],X[j+1])); } bool ok() { F0Rd(i,K+1) FOR(j,K,N) F0R(k,2) dp[i][j][k] = INF; dp[K][K][0] = dp[K][K][1] = 0; F0Rd(i,K+1) FOR(j,K,N) balance(i,j), ad(i,j); return min(dp[0][N-1][0],dp[0][N-1][1]) != INF; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> N >> K >> T; X.resize(N); K--; F0R(i,N) cin >> X[i]; int lo = 0, hi = MOD; while (lo < hi) { mid = (lo+hi)/2; if (ok()) hi = mid; else lo = mid+1; } cout << lo; } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds * if you have no idea just guess the appropriate well-known algo instead of doing nothing :/ */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...