답안 #697733

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
697733 2023-02-11T00:07:03 Z hadi 메기 농장 (IOI22_fish) C++17
81 / 100
1000 ms 41408 KB
#include <iostream>
#include <vector>
#include <algorithm>
#include <map>
#include <array>
// #include <assert.h>
#include <deque>

using namespace std;
#define assert(X) {}

class NoOutput : public std::basic_ostream<char> {

};

template<class V>
NoOutput& operator<<(NoOutput& os, const V& v) {
	return os;
}
// NoOutput err;
// ostream& err = cerr;

typedef long long int64 ;
const int64 INF = 1e15L;
const int MAXN = 100000+10;

bool is_sorted(const vector<int>& v) {
	for (size_t i=1; i<v.size(); i++) {
		if (v[i-1] > v[i]) return false;
	}
	return true;
}

// return first index i such that k<=v[i], if not returns v.size()
int lowest_geq(const vector<int>& v, int k) {
	auto it = lower_bound(v.begin(), v.end(), k);
	return it == v.end() ? (int) v.size() : it - v.begin();
}

vector<pair<int,int>> transform_container(const vector<int>& c, std::function<pair<int,int> (int)> &&f)
{
    vector<pair<int,int>> ret;
    std::transform(std::begin(c), std::end(c), std::inserter(ret, std::end(ret)), f);
    return ret;
}

template<typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
	os << "[";
	for (auto const& vv: v) 
		os << vv << " ";
	return os << "]";
}

template<typename T>
ostream& operator<<(ostream& os, const deque<T>& v) {
	os << "[";
	for (auto const& vv: v) 
		os << vv << " ";
	return os << "]";
}


template<typename T, typename C>
ostream& operator<<(ostream& os, const pair<T, C>& v) {
	return os << v.first << ":" << v.second;
}

struct IntervalTree {
	int n;
	vector<int64> t; 
	vector<int> key;

	void build(const vector<pair<int,int>> key_value) {
		n = key_value.size();
		t.resize(2*n);
		key.clear();
		for (size_t i=0; i<key_value.size(); i++) {
			key.push_back(key_value[i].first);
			t[n+i] = key_value[i].second;
		}
		assert(is_sorted(key));
		for (int i = n - 1; i > 0; --i) t[i] = t[i<<1] + t[i<<1|1];
	}

	int get_index(int p) const {
		return t[p+n];
	}

	void set_index(int p, int value) {
		for (t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1];
	}

	int64 query_index(int l, int r) const {  // sum on interval [l, r)
		int64 res = 0;
		for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
			if (l&1) res += t[l++];
			if (r&1) res += t[--r];
		}
		return res;
	}

	int lowest_geq_index(int v) const {
		return lowest_geq(key, v);
	}

	int64 query(int l_v, int r_v) const {
		return query_index(lowest_geq(key, l_v), lowest_geq(key, r_v));
	}

};


// sum of weight of fishes in column i in rows [x-y)
int64 fish(const IntervalTree & tree, int x, int y) {
	return tree.query(x, y);
}

int N;
map<int, int64> dp_iminus1_down, dp_i_down, dp_iminus1_up, dp_i_up;

// max_{N>=y >= x} DP[i-1,y,down] + fish(i,[x-y)), DP[i-1,y,up] + fish(i,[x-y))
int64 max_1(const IntervalTree& tree_i, int x) {
	//naive
	int64 res = 0;
	for (int y = x; y <= N; y++) {
		// err << "max_1(" << x << ") " << (dp_iminus1_down.find(y) != dp_iminus1_down.end() ? dp_iminus1_down[y] : -INF) << " " << (dp_iminus1_up.find(y) != dp_iminus1_up.end() ? dp_iminus1_up[y] : -INF) << " " << fish(tree_i, x, y) << endl;
		res = max(res, max(
			dp_iminus1_down.find(y) != dp_iminus1_down.end() ? dp_iminus1_down[y] : -INF, 
			dp_iminus1_up.find(y) != dp_iminus1_up.end() ? dp_iminus1_up[y] : -INF) + fish(tree_i, x, y));
	}
	return res;
}

// max_{0<=y<= x} DP[i-1,y,up] + fish(i-1,[y-x))
int64 max_2(const IntervalTree& tree_iminus1, int x) {
	//naive
	int64 res = 0;
	for (int y = 0; y <= x; y++) {
		// err << "max_2(" << x << ") " << (dp_iminus1_up.find(y) != dp_iminus1_up.end() ? dp_iminus1_up[y] : -INF) << " " << fish(tree_iminus1, y, x) << endl;
		res = max(res, 
			(dp_iminus1_up.find(y) != dp_iminus1_up.end() ? dp_iminus1_up[y] : -INF) + fish(tree_iminus1, y, x));
	}
	return res;
}

int64 max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
	::N = N;
	// err << "Input: X=" << X << " Y=" << Y << " W=" << W << endl;

	array<vector<int>, MAXN> column_fish_index;
	for (size_t f=0; f<(size_t)M; f++) {
		column_fish_index[X[f]].push_back(f);
	}

	for (size_t i=0; i<(size_t)N+1; i++) {
		sort(column_fish_index[i].begin(), column_fish_index[i].end(), [&](int f1, int f2) { return Y[f1] < Y[f2]; });
		// err << "column_fish_index[" << i << "]=" << column_fish_index[i] << endl;
	}

	IntervalTree tree_iminus1;
	tree_iminus1.build(transform_container(column_fish_index[0], [&Y, &W](int f) { return make_pair(Y[f], W[f]); }));

	dp_iminus1_down = dp_iminus1_up = map<int, int64>();
	dp_iminus1_down[0] = dp_iminus1_up[0] = 0;
	for (size_t c=0; c<=1; c++) {
		for (auto f : column_fish_index[c]) {
			dp_iminus1_up[Y[f]+1] = 0;
		}
	}

	for (size_t i=1; i<(size_t)N+1; i++) {
		// err << "Column " << i << endl;
		vector<int> important_rows_i;
		important_rows_i.push_back(0);
		for (size_t c=i-1; c<=i+1; c++) {
			for (auto f : column_fish_index[c]) {
				important_rows_i.push_back(Y[f]+1);
			}
		}
		sort(important_rows_i.begin(), important_rows_i.end());
		// err << "important_rows_i: " << important_rows_i << endl;
		important_rows_i.resize(unique(important_rows_i.begin(), important_rows_i.end()) - important_rows_i.begin());
		// err << "important_rows_i: " << important_rows_i << endl;
		
		//fill fish interval tree
		IntervalTree tree_i;
		tree_i.build(transform_container(column_fish_index[i], [&Y, &W](int f) { return make_pair(Y[f], W[f]); }));

		// max_{N>=y >= x} DP[i-1,y,down] + fish(i,[x-y)), DP[i-1,y,up] + fish(i,[x-y))
		deque<pair<int,int64>> max_1_discrete;
		max_1_discrete.push_front(make_pair(N+1, -INF));
		for (map<int, int64>::reverse_iterator x = dp_iminus1_up.rbegin(); x != dp_iminus1_up.rend(); x++) {
			auto prev = max_1_discrete.front();
			max_1_discrete.push_front(make_pair(x->first, 
				max(fish(tree_i, x->first, prev.first) + prev.second, 
					max(dp_iminus1_down[x->first], dp_iminus1_up[x->first])) 
			));
			// err << "max_1_discrete[" << x->first << "] p=" << prev << " a)" << (fish(tree_i, x->first, prev.first) + prev.second) << " b)" << dp_iminus1_down[x->first] << " c)" << dp_iminus1_up[x->first] << endl;
		}
		// err << "max_1_discrete: " << max_1_discrete << endl;

		deque<pair<int,int64>> max_2_discrete;
		// max_{0<=y<= x} DP[i-1,y,up] + fish(i-1,[y-x))
		for (auto const& x: dp_iminus1_up) {
			if (max_2_discrete.size() > 0) {
				auto prev = max_2_discrete.back();
				max_2_discrete.push_back(
					make_pair(
						x.first,
						max(
							fish(tree_iminus1, prev.first, x.first) + prev.second,
							dp_iminus1_up[x.first]
						)
					)
				);
			} else {
				max_2_discrete.push_back(
					make_pair(
						x.first,						
						dp_iminus1_up[x.first]
					)
				);
			}
		}
		// err << "max_2_discrete: " << max_2_discrete << endl;

		dp_i_down = dp_i_up = map<int, int64>();
		for (auto x : important_rows_i) {
			// dp_i_down[x] = max_1(tree_i, x);
			auto max_1_discrete_it = lower_bound(max_1_discrete.begin(), max_1_discrete.end(), x, [](const pair<int, int64>& max_1_disc, int r) { return max_1_disc.first < r; });
			// err << "max_1_discrete_it: " << *max_1_discrete_it << endl;
			dp_i_down[x] = max_1_discrete_it == max_1_discrete.end() ? -INF : max_1_discrete_it->second + fish(tree_i, x, max_1_discrete_it->first);
			
			// dp_i_up[x] = max(max_2(tree_iminus1, x), dp_iminus1_down[0]);
			auto max_2_discrete_it = lower_bound(max_2_discrete.rbegin(), max_2_discrete.rend(), x, [](const pair<int, int64>& max_2_disc, int r) { return !(max_2_disc.first <= r); } );
			// err << "max_2_discrete_it: " << *max_2_discrete_it << " p=" << (max_2_discrete_it == max_2_discrete.rbegin() ? make_pair<int,int64>(-1,-1) : *prev(max_2_discrete_it)) << endl;
			assert(max_2_discrete_it->first <= x);
			assert(max_2_discrete_it == max_2_discrete.rbegin() || prev(max_2_discrete_it)->first > x);
			dp_i_up[x] = max(max_2_discrete_it->second + fish(tree_iminus1, max_2_discrete_it->first, x), dp_iminus1_down[0]);
			// err << "dp[" << i << "," << x << "]=" << dp_i_down[x] << " ^:" << dp_i_up[x] << endl;
		}
		dp_iminus1_down = dp_i_down;
		dp_iminus1_up = dp_i_up;

		tree_iminus1 = tree_i;
	}
	return dp_iminus1_down[0];
}
# 결과 실행 시간 메모리 Grader output
1 Correct 213 ms 29748 KB Output is correct
2 Correct 274 ms 36088 KB Output is correct
3 Correct 33 ms 2644 KB Output is correct
4 Correct 34 ms 2516 KB Output is correct
5 Execution timed out 1091 ms 40468 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 398 ms 36248 KB Output is correct
3 Correct 469 ms 41408 KB Output is correct
4 Correct 223 ms 29804 KB Output is correct
5 Correct 274 ms 36128 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 1 ms 2644 KB Output is correct
9 Correct 2 ms 2644 KB Output is correct
10 Correct 33 ms 2624 KB Output is correct
11 Correct 35 ms 2644 KB Output is correct
12 Correct 329 ms 31332 KB Output is correct
13 Correct 410 ms 37992 KB Output is correct
14 Correct 290 ms 29836 KB Output is correct
15 Correct 238 ms 22064 KB Output is correct
16 Correct 282 ms 29768 KB Output is correct
17 Correct 317 ms 32740 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 34 ms 2516 KB Output is correct
2 Correct 34 ms 2648 KB Output is correct
3 Correct 71 ms 5588 KB Output is correct
4 Correct 64 ms 4580 KB Output is correct
5 Correct 105 ms 8140 KB Output is correct
6 Correct 103 ms 8140 KB Output is correct
7 Correct 110 ms 8244 KB Output is correct
8 Correct 105 ms 8116 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 1 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 1 ms 2644 KB Output is correct
9 Correct 2 ms 2644 KB Output is correct
10 Correct 3 ms 2644 KB Output is correct
11 Correct 2 ms 2644 KB Output is correct
12 Correct 3 ms 2644 KB Output is correct
13 Correct 2 ms 2644 KB Output is correct
14 Correct 3 ms 2644 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 1 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 1 ms 2644 KB Output is correct
9 Correct 2 ms 2644 KB Output is correct
10 Correct 3 ms 2644 KB Output is correct
11 Correct 2 ms 2644 KB Output is correct
12 Correct 3 ms 2644 KB Output is correct
13 Correct 2 ms 2644 KB Output is correct
14 Correct 3 ms 2644 KB Output is correct
15 Correct 2 ms 2644 KB Output is correct
16 Correct 4 ms 2644 KB Output is correct
17 Correct 67 ms 3972 KB Output is correct
18 Correct 57 ms 4180 KB Output is correct
19 Correct 55 ms 4052 KB Output is correct
20 Correct 50 ms 4116 KB Output is correct
21 Correct 44 ms 4052 KB Output is correct
22 Correct 108 ms 5448 KB Output is correct
23 Correct 19 ms 2980 KB Output is correct
24 Correct 57 ms 3580 KB Output is correct
25 Correct 3 ms 2644 KB Output is correct
26 Correct 18 ms 2900 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 1 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 1 ms 2644 KB Output is correct
9 Correct 2 ms 2644 KB Output is correct
10 Correct 3 ms 2644 KB Output is correct
11 Correct 2 ms 2644 KB Output is correct
12 Correct 3 ms 2644 KB Output is correct
13 Correct 2 ms 2644 KB Output is correct
14 Correct 3 ms 2644 KB Output is correct
15 Correct 2 ms 2644 KB Output is correct
16 Correct 4 ms 2644 KB Output is correct
17 Correct 67 ms 3972 KB Output is correct
18 Correct 57 ms 4180 KB Output is correct
19 Correct 55 ms 4052 KB Output is correct
20 Correct 50 ms 4116 KB Output is correct
21 Correct 44 ms 4052 KB Output is correct
22 Correct 108 ms 5448 KB Output is correct
23 Correct 19 ms 2980 KB Output is correct
24 Correct 57 ms 3580 KB Output is correct
25 Correct 3 ms 2644 KB Output is correct
26 Correct 18 ms 2900 KB Output is correct
27 Correct 6 ms 2772 KB Output is correct
28 Correct 308 ms 9348 KB Output is correct
29 Correct 535 ms 12484 KB Output is correct
30 Correct 735 ms 11504 KB Output is correct
31 Correct 740 ms 11492 KB Output is correct
32 Correct 348 ms 12160 KB Output is correct
33 Correct 754 ms 11576 KB Output is correct
34 Correct 734 ms 11540 KB Output is correct
35 Correct 213 ms 6368 KB Output is correct
36 Correct 705 ms 11872 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 34 ms 2516 KB Output is correct
2 Correct 34 ms 2648 KB Output is correct
3 Correct 71 ms 5588 KB Output is correct
4 Correct 64 ms 4580 KB Output is correct
5 Correct 105 ms 8140 KB Output is correct
6 Correct 103 ms 8140 KB Output is correct
7 Correct 110 ms 8244 KB Output is correct
8 Correct 105 ms 8116 KB Output is correct
9 Correct 185 ms 8012 KB Output is correct
10 Correct 84 ms 6552 KB Output is correct
11 Correct 185 ms 10468 KB Output is correct
12 Correct 2 ms 2644 KB Output is correct
13 Correct 2 ms 2644 KB Output is correct
14 Correct 2 ms 2644 KB Output is correct
15 Correct 1 ms 2644 KB Output is correct
16 Correct 2 ms 2644 KB Output is correct
17 Correct 3 ms 2644 KB Output is correct
18 Correct 35 ms 2644 KB Output is correct
19 Correct 34 ms 2644 KB Output is correct
20 Correct 33 ms 2516 KB Output is correct
21 Correct 35 ms 2624 KB Output is correct
22 Correct 178 ms 6972 KB Output is correct
23 Correct 260 ms 10484 KB Output is correct
24 Correct 224 ms 10480 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 213 ms 29748 KB Output is correct
2 Correct 274 ms 36088 KB Output is correct
3 Correct 33 ms 2644 KB Output is correct
4 Correct 34 ms 2516 KB Output is correct
5 Execution timed out 1091 ms 40468 KB Time limit exceeded
6 Halted 0 ms 0 KB -