Submission #697730

# Submission time Handle Problem Language Result Execution time Memory
697730 2023-02-10T23:37:42 Z hadi Catfish Farm (IOI22_fish) C++17
15 / 100
1000 ms 46956 KB
#include <iostream>
#include <vector>
#include <algorithm>
#include <map>
#include <array>
#include <assert.h>
#include <deque>

using namespace std;

class NoOutput : public std::basic_ostream<char> {

};

template<class V>
NoOutput& operator<<(NoOutput& os, const V& v) {
	return os;
}
NoOutput err;
// ostream& err = cerr;

typedef long long int64 ;
const int64 INF = 1e15L;
const int MAXN = 100000+10;

bool is_sorted(const vector<int>& v) {
	for (size_t i=1; i<v.size(); i++) {
		if (v[i-1] > v[i]) return false;
	}
	return true;
}

// return first index i such that k<=v[i], if not returns v.size()
int lowest_geq(const vector<int>& v, int k) {
	auto it = lower_bound(v.begin(), v.end(), k);
	return it == v.end() ? (int) v.size() : it - v.begin();
}

vector<pair<int,int>> transform_container(const vector<int>& c, std::function<pair<int,int> (int)> &&f)
{
    vector<pair<int,int>> ret;
    std::transform(std::begin(c), std::end(c), std::inserter(ret, std::end(ret)), f);
    return ret;
}

template<typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
	os << "[";
	for (auto const& vv: v) 
		os << vv << " ";
	return os << "]";
}

template<typename T>
ostream& operator<<(ostream& os, const deque<T>& v) {
	os << "[";
	for (auto const& vv: v) 
		os << vv << " ";
	return os << "]";
}


template<typename T, typename C>
ostream& operator<<(ostream& os, const pair<T, C>& v) {
	return os << v.first << ":" << v.second;
}

struct IntervalTree {
	int n;
	vector<int64> t; 
	vector<int> key;

	void build(const vector<pair<int,int>> key_value) {
		n = key_value.size();
		t.resize(2*n);
		key.clear();
		for (size_t i=0; i<key_value.size(); i++) {
			key.push_back(key_value[i].first);
			t[n+i] = key_value[i].second;
		}
		assert(is_sorted(key));
		for (int i = n - 1; i > 0; --i) t[i] = t[i<<1] + t[i<<1|1];
	}

	int get_index(int p) const {
		return t[p+n];
	}

	void set_index(int p, int value) {
		for (t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1];
	}

	int64 query_index(int l, int r) const {  // sum on interval [l, r)
		int64 res = 0;
		for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
			if (l&1) res += t[l++];
			if (r&1) res += t[--r];
		}
		return res;
	}

	int lowest_geq_index(int v) const {
		return lowest_geq(key, v);
	}

	int64 query(int l_v, int r_v) const {
		return query_index(lowest_geq(key, l_v), lowest_geq(key, r_v));
	}

};


// sum of weight of fishes in column i in rows [x-y)
int64 fish(const IntervalTree & tree, int x, int y) {
	return tree.query(x, y);
}

int N;
map<int, int64> dp_iminus1_down, dp_i_down, dp_iminus1_up, dp_i_up;

// max_{N>=y >= x} DP[i-1,y,down] + fish(i,[x-y)), DP[i-1,y,up] + fish(i,[x-y))
int64 max_1(const IntervalTree& tree_i, int x) {
	//naive
	int64 res = 0;
	for (int y = x; y <= N; y++) {
		err << "max_1(" << x << ") " << (dp_iminus1_down.find(y) != dp_iminus1_down.end() ? dp_iminus1_down[y] : -INF) << " " << (dp_iminus1_up.find(y) != dp_iminus1_up.end() ? dp_iminus1_up[y] : -INF) << " " << fish(tree_i, x, y) << endl;
		res = max(res, max(
			dp_iminus1_down.find(y) != dp_iminus1_down.end() ? dp_iminus1_down[y] : -INF, 
			dp_iminus1_up.find(y) != dp_iminus1_up.end() ? dp_iminus1_up[y] : -INF) + fish(tree_i, x, y));
	}
	return res;
}

// max_{0<=y<= x} DP[i-1,y,up] + fish(i-1,[y-x))
int64 max_2(const IntervalTree& tree_iminus1, int x) {
	//naive
	int64 res = 0;
	for (int y = 0; y <= x; y++) {
		err << "max_2(" << x << ") " << (dp_iminus1_up.find(y) != dp_iminus1_up.end() ? dp_iminus1_up[y] : -INF) << " " << fish(tree_iminus1, y, x) << endl;
		res = max(res, 
			(dp_iminus1_up.find(y) != dp_iminus1_up.end() ? dp_iminus1_up[y] : -INF) + fish(tree_iminus1, y, x));
	}
	return res;
}

int64 max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
	::N = N;
	err << "Input: X=" << X << " Y=" << Y << " W=" << W << endl;

	array<vector<int>, MAXN> column_fish_index;
	for (size_t f=0; f<(size_t)M; f++) {
		column_fish_index[X[f]].push_back(f);
	}

	for (size_t i=0; i<(size_t)N+1; i++) {
		sort(column_fish_index[i].begin(), column_fish_index[i].end(), [&](int f1, int f2) { return Y[f1] < Y[f2]; });
		err << "column_fish_index[" << i << "]=" << column_fish_index[i] << endl;
	}

	IntervalTree tree_iminus1;
	tree_iminus1.build(transform_container(column_fish_index[0], [&Y, &W](int f) { return make_pair(Y[f], W[f]); }));

	dp_iminus1_down = dp_iminus1_up = map<int, int64>();
	dp_iminus1_down[0] = dp_iminus1_up[0] = 0;
	for (size_t c=0; c<=1; c++) {
		for (auto f : column_fish_index[c]) {
			dp_iminus1_up[Y[f]+1] = 0;
		}
	}

	for (size_t i=1; i<(size_t)N+1; i++) {
		err << "Column " << i << endl;
		vector<int> important_rows_i;
		important_rows_i.push_back(0);
		for (size_t c=i-1; c<=i+1; c++) {
			for (auto f : column_fish_index[c]) {
				important_rows_i.push_back(Y[f]+1);
			}
		}
		sort(important_rows_i.begin(), important_rows_i.end());
		//err << "important_rows_i: " << important_rows_i << endl;
		important_rows_i.resize(unique(important_rows_i.begin(), important_rows_i.end()) - important_rows_i.begin());
		err << "important_rows_i: " << important_rows_i << endl;
		
		//fill fish interval tree
		IntervalTree tree_i;
		tree_i.build(transform_container(column_fish_index[i], [&Y, &W](int f) { return make_pair(Y[f], W[f]); }));

		// max_{N>=y >= x} DP[i-1,y,down] + fish(i,[x-y)), DP[i-1,y,up] + fish(i,[x-y))
		deque<pair<int,int64>> max_1_discrete;
		max_1_discrete.push_front(make_pair(N+1, -INF));
		for (map<int, int64>::reverse_iterator x = dp_iminus1_up.rbegin(); x != dp_iminus1_up.rend(); x++) {
			auto prev = max_1_discrete.front();
			max_1_discrete.push_front(make_pair(x->first, 
				max(fish(tree_i, x->first, prev.first) + prev.second, 
					max(dp_iminus1_down[x->first], dp_iminus1_up[x->first])) 
			));
			err << "max_1_discrete[" << x->first << "] p=" << prev << " a)" << (fish(tree_i, x->first, prev.first) + prev.second) << " b)" << dp_iminus1_down[x->first] << " c)" << dp_iminus1_up[x->first] << endl;
		}
		err << "max_1_discrete: " << max_1_discrete << endl;

		deque<pair<int,int64>> max_2_discrete;
		// max_{0<=y<= x} DP[i-1,y,up] + fish(i-1,[y-x))
		for (auto const& x: dp_iminus1_up) {
			if (max_2_discrete.size() > 0) {
				auto prev = max_2_discrete.back();
				max_2_discrete.push_back(
					make_pair(
						x.first,
						max(
							fish(tree_iminus1, prev.first, x.first) + prev.second,
							dp_iminus1_up[x.first]
						)
					)
				);
			} else {
				max_2_discrete.push_back(
					make_pair(
						x.first,						
						dp_iminus1_up[x.first]
					)
				);
			}
		}
		err << "max_2_discrete: " << max_2_discrete << endl;

		dp_i_down = dp_i_up = map<int, int64>();
		for (auto x : important_rows_i) {
			// dp_i_down[x] = max_1(tree_i, x);
			auto max_1_discrete_it = lower_bound(max_1_discrete.begin(), max_1_discrete.end(), x, [](const pair<int, int64>& max_1_disc, int r) { return max_1_disc.first < r; });
			dp_i_down[x] = max_1_discrete_it == max_1_discrete.end() ? -INF : max_1_discrete_it->second;
			
			// dp_i_up[x] = max(max_2(tree_iminus1, x), dp_iminus1_down[0]);
			auto max_2_discrete_it = lower_bound(max_2_discrete.rbegin(), max_2_discrete.rend(), x, [](const pair<int, int64>& max_2_disc, int r) { return !(max_2_disc.first <= r); } );
			err << "max_2_discrete_it: " << *max_2_discrete_it << " p=" << (max_2_discrete_it == max_2_discrete.rbegin() ? make_pair<int,int64>(-1,-1) : *prev(max_2_discrete_it)) << endl;
			assert(max_2_discrete_it->first <= x);
			assert(max_2_discrete_it == max_2_discrete.rbegin() || prev(max_2_discrete_it)->first > x);
			dp_i_up[x] = max(max_2_discrete_it->second, dp_iminus1_down[0]);
			err << "dp[" << i << "," << x << "]=" << dp_i_down[x] << " ^:" << dp_i_up[x] << endl;
		}
		dp_iminus1_down = dp_i_down;
		dp_iminus1_up = dp_i_up;

		tree_iminus1 = tree_i;
	}
	return dp_iminus1_down[0];
}
# Verdict Execution time Memory Grader output
1 Correct 241 ms 29936 KB Output is correct
2 Correct 306 ms 37916 KB Output is correct
3 Correct 44 ms 2644 KB Output is correct
4 Correct 44 ms 2644 KB Output is correct
5 Execution timed out 1061 ms 46956 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 445 ms 36568 KB Output is correct
3 Correct 553 ms 44720 KB Output is correct
4 Correct 251 ms 31180 KB Output is correct
5 Correct 311 ms 37892 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2604 KB Output is correct
8 Correct 2 ms 2644 KB Output is correct
9 Correct 2 ms 2608 KB Output is correct
10 Correct 46 ms 2648 KB Output is correct
11 Correct 45 ms 2632 KB Output is correct
12 Correct 369 ms 32724 KB Output is correct
13 Correct 498 ms 39708 KB Output is correct
14 Correct 320 ms 31164 KB Output is correct
15 Correct 251 ms 23616 KB Output is correct
16 Correct 314 ms 31248 KB Output is correct
17 Correct 351 ms 34268 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 45 ms 2644 KB Output is correct
2 Correct 51 ms 2644 KB Output is correct
3 Correct 92 ms 6516 KB Output is correct
4 Correct 77 ms 5260 KB Output is correct
5 Correct 124 ms 9756 KB Output is correct
6 Correct 118 ms 9096 KB Output is correct
7 Correct 129 ms 9680 KB Output is correct
8 Correct 129 ms 9700 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 1 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 1 ms 2604 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Incorrect 2 ms 2644 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 1 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 1 ms 2604 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Incorrect 2 ms 2644 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 1 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 1 ms 2604 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Incorrect 2 ms 2644 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 45 ms 2644 KB Output is correct
2 Correct 51 ms 2644 KB Output is correct
3 Correct 92 ms 6516 KB Output is correct
4 Correct 77 ms 5260 KB Output is correct
5 Correct 124 ms 9756 KB Output is correct
6 Correct 118 ms 9096 KB Output is correct
7 Correct 129 ms 9680 KB Output is correct
8 Correct 129 ms 9700 KB Output is correct
9 Correct 181 ms 9476 KB Output is correct
10 Correct 117 ms 8240 KB Output is correct
11 Correct 204 ms 13948 KB Output is correct
12 Correct 2 ms 2644 KB Output is correct
13 Correct 2 ms 2600 KB Output is correct
14 Correct 1 ms 2644 KB Output is correct
15 Correct 2 ms 2644 KB Output is correct
16 Correct 2 ms 2644 KB Output is correct
17 Incorrect 2 ms 2644 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 241 ms 29936 KB Output is correct
2 Correct 306 ms 37916 KB Output is correct
3 Correct 44 ms 2644 KB Output is correct
4 Correct 44 ms 2644 KB Output is correct
5 Execution timed out 1061 ms 46956 KB Time limit exceeded
6 Halted 0 ms 0 KB -