Submission #697524

# Submission time Handle Problem Language Result Execution time Memory
697524 2023-02-10T08:46:51 Z vuavisao Magic Tree (CEOI19_magictree) C++14
83 / 100
105 ms 40396 KB
#include<bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define ll long long
using namespace std;

const ll N = 1e5 + 10;

ll n, m, k;
vector<ll> g[N];

ll d[N], cost[N];
bool have[N];

namespace sub145 {
    bool check() {
        return (k <= 20);
    }

    ll dp[N][22];

    void dfs(ll u) {
        for(const auto& v : g[u]) {
            dfs(v);
            for(ll use = 0; use <= k; ++ use) {
                dp[u][use] += dp[v][use];
            }
        }
        if(have[u]) {
            dp[u][d[u]] += cost[u];
        }
        for(ll use = 1; use <= k; ++ use) dp[u][use] = max(dp[u][use], dp[u][use - 1]);
    }

    void solve() {
        dfs(1);
        cout << dp[1][k];
    }
}

namespace sub2 {
    bool check() {
        for(ll u = 1; u <= n; ++ u) {
            if(g[u].empty()) {
            }
            else {
                if(have[u]) return false;
            }
        }
        return true;
    }

    void solve() {
        ll res = 0;
        for(ll u = 1; u <= n; ++ u) res += cost[u];
        cout << res;
    }
}

namespace sub3 {
    bool check() {
        for(ll u = 1; u < n; ++ u) {
            if((ll) g[u].size() != 1 || g[u][0] != u + 1) return false;
        }
        for(ll u = 1; u <= n; ++ u) {
            if(have[u]) {
                if(cost[u] != 1) return false;
            }
        }
        return true;
    }

    ll tree[N];

    void update(ll idx, ll val) {
        for( ; idx <= k; idx += (idx & - idx)) tree[idx] = max(tree[idx], val);
    }

    ll query(ll idx) {
        ll res = 0;
        for( ; idx > 0; idx -= (idx & - idx)) res = max(res, tree[idx]);
        return res;
    }

    void compress() {
        vector<ll> Pos = {};
        for(ll u = 1; u <= n; ++ u) {
            if(have[u]) {
                Pos.push_back(d[u]);
            }
        }
        sort(Pos.begin(), Pos.end());
        Pos.resize(unique(Pos.begin(), Pos.end()) - Pos.begin());
        for(ll u = 1; u <= n; ++ u) {
            if(have[u]) {
                d[u] = lower_bound(Pos.begin(), Pos.end(), d[u]) - Pos.begin() + 1;
            }
        }
        k = (ll) Pos.size();
    }

    void solve() {
        compress();
        for(ll u = n; u >= 1; -- u) {
            if(have[u]) {
                ll len = query(d[u]) + 1;
                update(d[u], len);
            }
        }
        cout << query(k);
    }
}

namespace sub6 {
    bool check() {
        return (m <= 1000);
    }

    ll Lg, parent[20][N], dist[N];
    ll cnt, in[N], out[N];

    ll suff_indices[N];
    ll dp[2010][1010];

    void dfs(ll u) {
        in[u] = ++ cnt;
        for(const auto& v : g[u]) {
            parent[0][v] = u;
            dist[v] = dist[u] + 1;
            dfs(v);
        }
        out[u] = cnt;
    }

    ll lca(ll u, ll v) {
        if(dist[u] < dist[v]) swap(u, v);
        ll delta = dist[u] - dist[v];
        for(ll i = Lg; i >= 0; -- i) {
            if(delta >> i & 1) {
                u = parent[i][u];
            }
        }
        if(u == v) return u;
        for(ll i = Lg; i >= 0; -- i) {
            if(parent[i][u] == parent[i][v]) continue;
            u = parent[i][u];
            v = parent[i][v];
        }
        return parent[0][u];
    }

    bool inside(ll u, ll v) {
        return (in[u] <= in[v] && out[v] <= out[u]);
    }

    void compress(const vector<ll>& indices) {
        vector<ll> Pos = indices;
        sort(Pos.begin(), Pos.end());
        for(const auto& u : indices) {
            ll idx = lower_bound(Pos.begin(), Pos.end(), u) - Pos.begin() + 1;
            suff_indices[u] = idx;
        }
        Pos.clear();
        for(ll u = 1; u <= n; ++ u) {
            if(have[u]) {
                Pos.push_back(d[u]);
            }
        }
        sort(Pos.begin(), Pos.end());
        for(ll u = 1; u <= n; ++ u) {
            if(have[u]) {
                ll idx = lower_bound(Pos.begin(), Pos.end(), d[u]) - Pos.begin() + 1;
                d[u] = idx;
            }
        }
        k = (ll) Pos.size();
    }

    void dfs_calc(ll u) {
        for(const auto& v : g[u]) {
            dfs_calc(v);
            for(ll use = 0; use <= k; ++ use) {
                dp[suff_indices[u]][use] += dp[suff_indices[v]][use];
            }
        }
        if(have[u]) {
            dp[suff_indices[u]][d[u]] += cost[u];
        }
        for(ll use = 1; use <= k; ++ use) dp[suff_indices[u]][use] = max(dp[suff_indices[u]][use], dp[suff_indices[u]][use - 1]);
    }

    void solve() {
        dist[1] = 1; dfs(1);
        Lg = __lg(n);
        for(ll j = 1; j <= Lg; ++ j) {
            for(ll i = 1; i <= n; ++ i) {
                parent[j][i] = parent[j - 1][parent[j - 1][i]];
            }
        }
        for(ll u = 1; u <= n; ++ u) g[u].clear();
        vector<ll> indices = {};
        for(ll u = 1; u <= n; ++ u) {
            if(have[u]) {
                indices.push_back(u);
            }
        }
        sort(indices.begin(), indices.end(), [&] (ll u, ll v) -> bool {
            return in[u] > in[v];
        });
        ll cnt = (ll) indices.size();
        for(ll i = 1; i < cnt; ++ i) indices.push_back(lca(indices[i - 1], indices[i]));
        sort(indices.begin(), indices.end(), [&] (ll u, ll v) -> bool {
            return in[u] > in[v];
        });
        indices.resize(unique(indices.begin(), indices.end()) - indices.begin());
        compress(indices);
        stack<ll> stk = {};
        for(const auto& u : indices) {
            while(!stk.empty() && inside(u, stk.top())) {
                ll v = stk.top(); stk.pop();
                g[u].push_back(v);
//                cout << u << ' ' << v << '\n';
            }
            stk.push(u);
        }
        dfs_calc(stk.top());
        cout << dp[suff_indices[stk.top()]][k];
    }
}

namespace sub7 {
    bool check() {
        for(ll u = 1; u <= n; ++ u) {
            if(have[u]) {
                if(cost[u] != 1) return false;
            }
        }
        return true;
    }

    multiset<ll> mst[N];
    ll res;

    void dfs(ll u) {
        ll big_child = - 1;
        for(const auto& v : g[u]) {
            dfs(v);
            if(big_child == - 1 || (ll) mst[v].size() > (ll) mst[big_child].size()) big_child = v;
        }
        if(big_child > - 1) {
            swap(mst[u], mst[big_child]);
        }
        for(const auto& v : g[u]) {
            if(v == big_child) continue;
            mst[u].insert(mst[v].begin(), mst[v].end());
        }
        if(have[u]) {
            auto psy = mst[u].upper_bound(d[u]);
            if(psy == mst[u].end()) {
                mst[u].insert(d[u]);
            }
            else {
                mst[u].erase(psy);
                mst[u].insert(d[u]);
            }
        }
        res = max(res, (ll) mst[u].size());
    }

    void solve() {
        dfs(1);
        cout << res;
    }
}

int32_t main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    if (fopen("CEOI19_MAGICTREE.inp", "r")) {
        freopen("CEOI19_MAGICTREE.inp", "r", stdin);
        freopen("CEOI19_MAGICTREE.out", "w", stdout);
    }
    cin >> n >> m >> k;
    for(ll v = 2; v <= n; ++ v) {
        ll u; cin >> u;
        g[u].push_back(v);
//        cout << u << ' ' << v << '\n';
    }
    for(ll i = 1; i <= m; ++ i) {
        ll u; cin >> u >> d[u] >> cost[u];
        have[u] = true;
    }
    if(sub145::check()) {
        sub145::solve();
        return 0;
    }
    if(sub2::check()) {
        sub2::solve();
        return 0;
    }
    if(sub3::check()) {
        sub3::solve();
        return 0;
    }
    if(sub6::check()) {
        sub6::solve();
        return 0;
    }
    if(sub7::check()) {
        sub7::solve();
        return 0;
    }
//    sub8::solve();
    return 0;
}

/// Code by vuavisao

Compilation message

magictree.cpp: In function 'int32_t main()':
magictree.cpp:281:16: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  281 |         freopen("CEOI19_MAGICTREE.inp", "r", stdin);
      |         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
magictree.cpp:282:16: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)' declared with attribute 'warn_unused_result' [-Wunused-result]
  282 |         freopen("CEOI19_MAGICTREE.out", "w", stdout);
      |         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 7380 KB Output is correct
2 Correct 4 ms 7380 KB Output is correct
3 Correct 4 ms 7380 KB Output is correct
4 Correct 4 ms 7376 KB Output is correct
5 Correct 4 ms 7380 KB Output is correct
6 Correct 4 ms 7380 KB Output is correct
7 Correct 4 ms 7328 KB Output is correct
8 Correct 3 ms 7380 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 37 ms 10752 KB Output is correct
2 Correct 30 ms 11236 KB Output is correct
3 Correct 42 ms 12616 KB Output is correct
4 Correct 34 ms 11988 KB Output is correct
5 Correct 39 ms 12568 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7380 KB Output is correct
2 Correct 4 ms 7380 KB Output is correct
3 Correct 4 ms 7380 KB Output is correct
4 Correct 52 ms 13324 KB Output is correct
5 Correct 45 ms 13312 KB Output is correct
6 Correct 55 ms 13328 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 92 ms 28032 KB Output is correct
2 Correct 69 ms 28116 KB Output is correct
3 Correct 51 ms 30664 KB Output is correct
4 Correct 35 ms 27120 KB Output is correct
5 Correct 45 ms 33956 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 7380 KB Output is correct
2 Correct 4 ms 7380 KB Output is correct
3 Correct 4 ms 7380 KB Output is correct
4 Correct 4 ms 7376 KB Output is correct
5 Correct 4 ms 7380 KB Output is correct
6 Correct 4 ms 7380 KB Output is correct
7 Correct 4 ms 7328 KB Output is correct
8 Correct 3 ms 7380 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 66 ms 28128 KB Output is correct
11 Correct 62 ms 28016 KB Output is correct
12 Correct 68 ms 30668 KB Output is correct
13 Correct 53 ms 27108 KB Output is correct
14 Correct 44 ms 34060 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 20888 KB Output is correct
2 Correct 41 ms 37076 KB Output is correct
3 Correct 41 ms 37124 KB Output is correct
4 Correct 48 ms 40048 KB Output is correct
5 Correct 26 ms 34196 KB Output is correct
6 Correct 46 ms 40396 KB Output is correct
7 Correct 47 ms 38608 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 7380 KB Output is correct
2 Correct 4 ms 7380 KB Output is correct
3 Correct 4 ms 7380 KB Output is correct
4 Correct 4 ms 7376 KB Output is correct
5 Correct 4 ms 7380 KB Output is correct
6 Correct 4 ms 7380 KB Output is correct
7 Correct 4 ms 7328 KB Output is correct
8 Correct 3 ms 7380 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 4 ms 7380 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 4 ms 7380 KB Output is correct
13 Correct 52 ms 13324 KB Output is correct
14 Correct 45 ms 13312 KB Output is correct
15 Correct 55 ms 13328 KB Output is correct
16 Correct 66 ms 28128 KB Output is correct
17 Correct 62 ms 28016 KB Output is correct
18 Correct 68 ms 30668 KB Output is correct
19 Correct 53 ms 27108 KB Output is correct
20 Correct 44 ms 34060 KB Output is correct
21 Correct 24 ms 10648 KB Output is correct
22 Correct 73 ms 19352 KB Output is correct
23 Correct 69 ms 19384 KB Output is correct
24 Correct 105 ms 25684 KB Output is correct
25 Correct 65 ms 18148 KB Output is correct
26 Correct 89 ms 19148 KB Output is correct
27 Correct 65 ms 18004 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 7380 KB Output is correct
2 Correct 4 ms 7380 KB Output is correct
3 Correct 4 ms 7380 KB Output is correct
4 Correct 4 ms 7376 KB Output is correct
5 Correct 4 ms 7380 KB Output is correct
6 Correct 4 ms 7380 KB Output is correct
7 Correct 4 ms 7328 KB Output is correct
8 Correct 3 ms 7380 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 37 ms 10752 KB Output is correct
11 Correct 30 ms 11236 KB Output is correct
12 Correct 42 ms 12616 KB Output is correct
13 Correct 34 ms 11988 KB Output is correct
14 Correct 39 ms 12568 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 4 ms 7380 KB Output is correct
17 Correct 4 ms 7380 KB Output is correct
18 Correct 52 ms 13324 KB Output is correct
19 Correct 45 ms 13312 KB Output is correct
20 Correct 55 ms 13328 KB Output is correct
21 Correct 92 ms 28032 KB Output is correct
22 Correct 69 ms 28116 KB Output is correct
23 Correct 51 ms 30664 KB Output is correct
24 Correct 35 ms 27120 KB Output is correct
25 Correct 45 ms 33956 KB Output is correct
26 Correct 66 ms 28128 KB Output is correct
27 Correct 62 ms 28016 KB Output is correct
28 Correct 68 ms 30668 KB Output is correct
29 Correct 53 ms 27108 KB Output is correct
30 Correct 44 ms 34060 KB Output is correct
31 Correct 16 ms 20888 KB Output is correct
32 Correct 41 ms 37076 KB Output is correct
33 Correct 41 ms 37124 KB Output is correct
34 Correct 48 ms 40048 KB Output is correct
35 Correct 26 ms 34196 KB Output is correct
36 Correct 46 ms 40396 KB Output is correct
37 Correct 47 ms 38608 KB Output is correct
38 Correct 24 ms 10648 KB Output is correct
39 Correct 73 ms 19352 KB Output is correct
40 Correct 69 ms 19384 KB Output is correct
41 Correct 105 ms 25684 KB Output is correct
42 Correct 65 ms 18148 KB Output is correct
43 Correct 89 ms 19148 KB Output is correct
44 Correct 65 ms 18004 KB Output is correct
45 Incorrect 11 ms 8536 KB Output isn't correct
46 Halted 0 ms 0 KB -