Submission #69454

#TimeUsernameProblemLanguageResultExecution timeMemory
69454BenqLong Mansion (JOI17_long_mansion)C++14
100 / 100
1277 ms177720 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 500005; int N, C[MX], L[MX], R[MX]; int needL[MX], needR[MX]; vi posi[MX], Rneed[MX], Lneed[MX]; priority_queue<int> p[MX]; set<int> s; deque<pi> d; void tri0(int i) { auto it = s.lb(needL[i]); if (it == s.begin()) return; int j = *prev(it); if (i > j) return; if (i == 1) { d.pb({i,N}); return; } int num = j-i+1; int lef = num; while (lef) { int LEF = min(d.front().s,lef); d.front().s -= LEF, lef -= LEF; if (d.front().s == 0) d.pop_front(); } d.push_front({i,num}); } void tri1(int i) { auto it = s.ub(needR[i]); if (it == s.end()) return; int j = *it; if (j > i) return; if (i == N) { d.pb({i,N}); return; } int num = i-j+1; int lef = num; while (lef) { int LEF = min(d.front().s,lef); d.front().s -= LEF, lef -= LEF; if (d.front().s == 0) d.pop_front(); } d.push_front({i,num}); } void del() { d.front().s --; if (!d.front().s) d.pop_front(); } void gen() { FOR(i,1,N+1) for (int j: posi[i]) p[j].push(-i); FOR(i,1,N+1) { needL[i] = (sz(p[C[i-1]]) ? -p[C[i-1]].top() : N+1); Lneed[needL[i]].pb(i); for (int j: posi[i]) p[j].pop(); } FOR(i,1,N+1) for (int j: posi[i]) p[j].push(i); FORd(i,1,N+1) { needR[i] = (sz(p[C[i]]) ? p[C[i]].top() : 0); Rneed[needR[i]].pb(i); for (int j: posi[i]) p[j].pop(); } FOR(i,1,N+1) { for (int j: Rneed[i-1]) s.insert(j); tri0(i); L[i] = d.front().f; del(); } s.clear(); assert(!sz(d)); FORd(i,1,N+1) { for (int j: Lneed[i+1]) s.insert(j); tri1(i); R[i] = d.front().f; del(); } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> N; FOR(i,1,N) cin >> C[i]; FOR(i,1,N+1) { int B; cin >> B; F0R(j,B) { int A; cin >> A; posi[i].pb(A); } } gen(); int Q; cin >> Q; F0R(i,Q) { int X,Y; cin >> X >> Y; if (L[X] <= Y && Y <= R[X]) cout << "YES"; else cout << "NO"; cout << "\n"; } } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds * if you have no idea just guess the appropriate well-known algo instead of doing nothing :/ */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...