답안 #69443

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
69443 2018-08-20T21:09:40 Z Benq Dragon 2 (JOI17_dragon2) C++14
100 / 100
3317 ms 23108 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
const ld PI = 4*atan((ld)1);
 
namespace geo {
    istream& operator>> (istream& is, pi& p) {
        is >> p.f >> p.s;
        return is;
    }
    void nor(pd& x) { if (x.f < -PI) x.f += 2*PI, x.s += 2*PI; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
    pi operator-(const pi& l, const pi& r) { return {l.f-r.f,l.s-r.s}; }
}

using namespace geo;

struct BIT {
    vector<array<int,3>> toUpd;
    vector<pair<array<int,3>,int*>> toQuery;
    vi m, bit;
    
    void clr() {
        toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
    }
    
    void upd(int x, int y) {
        for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(int x, int y, int* z) {
        for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X)) 
            (*z) += y*bit[X];
    }
    
    void prop() {
        for (auto x: toUpd) m.pb(x[1]);
        m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
        bit.resize(sz(m));
        sort(all(toUpd)), sort(all(toQuery));
        
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};

int N,M,group[MX],ans[100001];
vi member[MX];
pi pos[MX], h[2];
pi POS[MX];
pair<pi,pi> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;

void process1(int x) {
    z.clr();
    array<int,MX> co = array<int,MX>(); 
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f+1,BOUND[a].s.f+1,1});
        z.toUpd.pb({BOUND[a].f.s+1,BOUND[a].s.s+1,1});
        z.toUpd.pb({BOUND[a].f.f+1,BOUND[a].s.s+1,-1});
        z.toUpd.pb({BOUND[a].f.s+1,BOUND[a].s.f+1,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+N,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+N,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+N,POS[a].s+N,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}

void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}

void process(int x) {
    //if (sz(query[x])) process1(x);
    if ((ll)sz(member[x])*sz(query[x]) >= N) process1(x);
    else process2(x);
}

int half(pi x) {
    if (x.s != 0) return x.s > 0;
    return x.f > 0;
}

ll area(pi a, pi b) {
    return (ll)a.f*b.s-(ll)a.s*b.f;
}

ll area(pi a, pi b, pi c) {
    b.f -= a.f, b.s -= a.s;
    c.f -= a.f, c.s -= a.s;
    return area(b,c);
}

bool cmp(pi a, pi b) {
    if (half(a) != half(b)) return half(a) < half(b);
    return area(a,b) > 0;
}

pi nor(pi x) {
    while (x.f < 0) x.f += N, x.s += N;
    while (x.f >= N) x.f -= N, x.s -= N;
    /*if (x.s < 0 || x.s > 2*N-1 || x.s <= x.f || x.s > x.f+N) {
        cerr << " " << x.f << " " << x.s << "\n";
        exit(0);
    }*/
    return x;
}

void genCoordinate(int ind) {
    vector<pair<pi,int>> v;
    FOR(i,1,N+1) v.pb({pos[i]-h[ind],i});
    sort(all(v),[](auto a, auto b) { return cmp(a.f,b.f); });
    int cur = 0;
    F0R(i,N) {
        while (cur < i+N && area(v[i].f,v[cur%N].f) >= 0) cur ++;
        if (ind == 0) POS[v[i].s].f = i;
        else POS[v[i].s].s = i;
        
        if (area(h[0],h[1],pos[v[i].s]) > 0) {
            if (ind == 0) BOUND[v[i].s].f = nor({cur-1,i+N-1});
            else BOUND[v[i].s].s = nor({i,cur-1});
        } else {
            if (ind == 0) BOUND[v[i].s].f = nor({i,cur-1});
            else BOUND[v[i].s].s = nor({cur-1,i+N-1});
        }
    }
}

void input() {
    //freopen("Input.txt","r",stdin);
    //freopen("Output.txt","w",stdout);
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    cin >> h[0] >> h[1];
    genCoordinate(0);
    genCoordinate(1);
}
 
int main() {
    input();
    int Q; cin >> Q; // Q = 50;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    FOR(i,1,M+1) {
        z.clr();
        for (auto a: query2[i]) for (int b: member[a.f]) {
            assert(group[b] != i);
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+N,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+N,1});
            z.toUpd.pb({POS[a].f+N,POS[a].s+N,1});
        }
        z.prop();
    }
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 3000 KB Output is correct
2 Correct 25 ms 3292 KB Output is correct
3 Correct 120 ms 3420 KB Output is correct
4 Correct 252 ms 6708 KB Output is correct
5 Correct 105 ms 8148 KB Output is correct
6 Correct 12 ms 8148 KB Output is correct
7 Correct 11 ms 8148 KB Output is correct
8 Correct 14 ms 8148 KB Output is correct
9 Correct 11 ms 8148 KB Output is correct
10 Correct 12 ms 8148 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 89 ms 9076 KB Output is correct
2 Correct 234 ms 10300 KB Output is correct
3 Correct 83 ms 10300 KB Output is correct
4 Correct 48 ms 10300 KB Output is correct
5 Correct 52 ms 10300 KB Output is correct
6 Correct 82 ms 10332 KB Output is correct
7 Correct 80 ms 10412 KB Output is correct
8 Correct 88 ms 10412 KB Output is correct
9 Correct 75 ms 10412 KB Output is correct
10 Correct 60 ms 10412 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 3000 KB Output is correct
2 Correct 25 ms 3292 KB Output is correct
3 Correct 120 ms 3420 KB Output is correct
4 Correct 252 ms 6708 KB Output is correct
5 Correct 105 ms 8148 KB Output is correct
6 Correct 12 ms 8148 KB Output is correct
7 Correct 11 ms 8148 KB Output is correct
8 Correct 14 ms 8148 KB Output is correct
9 Correct 11 ms 8148 KB Output is correct
10 Correct 12 ms 8148 KB Output is correct
11 Correct 89 ms 9076 KB Output is correct
12 Correct 234 ms 10300 KB Output is correct
13 Correct 83 ms 10300 KB Output is correct
14 Correct 48 ms 10300 KB Output is correct
15 Correct 52 ms 10300 KB Output is correct
16 Correct 82 ms 10332 KB Output is correct
17 Correct 80 ms 10412 KB Output is correct
18 Correct 88 ms 10412 KB Output is correct
19 Correct 75 ms 10412 KB Output is correct
20 Correct 60 ms 10412 KB Output is correct
21 Correct 84 ms 10468 KB Output is correct
22 Correct 217 ms 10680 KB Output is correct
23 Correct 1480 ms 11032 KB Output is correct
24 Correct 2360 ms 11464 KB Output is correct
25 Correct 273 ms 11464 KB Output is correct
26 Correct 171 ms 11804 KB Output is correct
27 Correct 48 ms 11804 KB Output is correct
28 Correct 50 ms 11804 KB Output is correct
29 Correct 220 ms 15088 KB Output is correct
30 Correct 208 ms 15276 KB Output is correct
31 Correct 220 ms 15540 KB Output is correct
32 Correct 218 ms 15540 KB Output is correct
33 Correct 2498 ms 15540 KB Output is correct
34 Correct 196 ms 15540 KB Output is correct
35 Correct 169 ms 15540 KB Output is correct
36 Correct 161 ms 15540 KB Output is correct
37 Correct 163 ms 15540 KB Output is correct
38 Correct 2683 ms 15540 KB Output is correct
39 Correct 3317 ms 16068 KB Output is correct
40 Correct 2348 ms 16068 KB Output is correct
41 Correct 225 ms 19412 KB Output is correct
42 Correct 327 ms 20772 KB Output is correct
43 Correct 439 ms 22116 KB Output is correct
44 Correct 119 ms 22116 KB Output is correct
45 Correct 152 ms 22116 KB Output is correct
46 Correct 165 ms 23108 KB Output is correct
47 Correct 90 ms 23108 KB Output is correct
48 Correct 83 ms 23108 KB Output is correct
49 Correct 93 ms 23108 KB Output is correct