#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
const ld PI = 4*atan((ld)1);
namespace geo {
istream& operator>> (istream& is, pi& p) {
is >> p.f >> p.s;
return is;
}
void nor(pd& x) { if (x.f < -PI) x.f += 2*PI, x.s += 2*PI; }
ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
pi operator-(const pi& l, const pi& r) { return {l.f-r.f,l.s-r.s}; }
}
using namespace geo;
struct BIT {
vector<array<int,3>> toUpd;
vector<pair<array<int,3>,int*>> toQuery;
vi m, bit;
void clr() {
toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
}
void upd(int x, int y) {
for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
bit[X] += y;
}
void query(int x, int y, int* z) {
for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X))
(*z) += y*bit[X];
}
void prop() {
for (auto x: toUpd) m.pb(x[1]);
m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
bit.resize(sz(m));
sort(all(toUpd)), sort(all(toQuery));
int ind = 0;
for (auto x: toQuery) {
while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
upd(toUpd[ind][1],toUpd[ind][2]);
ind ++;
}
query(x.f[1],x.f[2],x.s);
}
}
};
int N,M,group[MX],ans[100001];
vi member[MX];
pi pos[MX], h[2];
pi POS[MX];
pair<pi,pi> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;
void process1(int x) {
z.clr();
array<int,MX> co = array<int,MX>();
for (int a: member[x]) {
z.toUpd.pb({BOUND[a].f.f+1,BOUND[a].s.f+1,1});
z.toUpd.pb({BOUND[a].f.s+1,BOUND[a].s.s+1,1});
z.toUpd.pb({BOUND[a].f.f+1,BOUND[a].s.s+1,-1});
z.toUpd.pb({BOUND[a].f.s+1,BOUND[a].s.f+1,-1});
}
FOR(a,1,N+1) {
z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
z.toQuery.pb({{POS[a].f+N,POS[a].s,1},&co[group[a]]});
z.toQuery.pb({{POS[a].f,POS[a].s+N,1},&co[group[a]]});
z.toQuery.pb({{POS[a].f+N,POS[a].s+N,1},&co[group[a]]});
}
z.prop();
for (auto a: query[x]) ans[a.s] = co[a.f];
}
void process2(int x) {
for (auto a: query[x]) query2[a.f].pb({x,a.s});
}
void process(int x) {
//if (sz(query[x])) process1(x);
if ((ll)sz(member[x])*sz(query[x]) >= N) process1(x);
else process2(x);
}
int half(pi x) {
if (x.s != 0) return x.s > 0;
return x.f > 0;
}
ll area(pi a, pi b) {
return (ll)a.f*b.s-(ll)a.s*b.f;
}
ll area(pi a, pi b, pi c) {
b.f -= a.f, b.s -= a.s;
c.f -= a.f, c.s -= a.s;
return area(b,c);
}
bool cmp(pi a, pi b) {
if (half(a) != half(b)) return half(a) < half(b);
return area(a,b) > 0;
}
pi nor(pi x) {
while (x.f < 0) x.f += N, x.s += N;
while (x.f >= N) x.f -= N, x.s -= N;
/*if (x.s < 0 || x.s > 2*N-1 || x.s <= x.f || x.s > x.f+N) {
cerr << " " << x.f << " " << x.s << "\n";
exit(0);
}*/
return x;
}
void genCoordinate(int ind) {
vector<pair<pi,int>> v;
FOR(i,1,N+1) v.pb({pos[i]-h[ind],i});
sort(all(v),[](auto a, auto b) { return cmp(a.f,b.f); });
int cur = 0;
F0R(i,N) {
while (cur < i+N && area(v[i].f,v[cur%N].f) >= 0) cur ++;
if (ind == 0) POS[v[i].s].f = i;
else POS[v[i].s].s = i;
if (area(h[0],h[1],pos[v[i].s]) > 0) {
if (ind == 0) BOUND[v[i].s].f = nor({cur-1,i+N-1});
else BOUND[v[i].s].s = nor({i,cur-1});
} else {
if (ind == 0) BOUND[v[i].s].f = nor({i,cur-1});
else BOUND[v[i].s].s = nor({cur-1,i+N-1});
}
}
}
void input() {
//freopen("Input.txt","r",stdin);
//freopen("Output.txt","w",stdout);
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N >> M;
FOR(i,1,N+1) {
cin >> pos[i] >> group[i];
member[group[i]].pb(i);
}
cin >> h[0] >> h[1];
genCoordinate(0);
genCoordinate(1);
}
int main() {
input();
int Q; cin >> Q; Q = 50;
F0R(i,Q) {
int f,g; cin >> f >> g;
query[f].pb({g,i});
}
FOR(i,1,M+1) process(i);
FOR(i,1,M+1) {
z.clr();
for (auto a: query2[i]) for (int b: member[a.f]) {
assert(group[b] != i);
z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
}
for (int a: member[i]) {
z.toUpd.pb({POS[a].f,POS[a].s,1});
z.toUpd.pb({POS[a].f+N,POS[a].s,1});
z.toUpd.pb({POS[a].f,POS[a].s+N,1});
z.toUpd.pb({POS[a].f+N,POS[a].s+N,1});
}
z.prop();
}
F0R(i,Q) cout << ans[i] << "\n";
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
15 ms |
3448 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
100 ms |
8680 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
15 ms |
3448 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |