답안 #69438

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
69438 2018-08-20T20:55:00 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
2161 ms 12580 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
const ld PI = 4*atan((ld)1);
 
namespace geo {
    istream& operator>> (istream& is, pi& p) {
        is >> p.f >> p.s;
        return is;
    }
    void nor(pd& x) { if (x.f < -PI) x.f += 2*PI, x.s += 2*PI; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
    pi operator-(const pi& l, const pi& r) { return {l.f-r.f,l.s-r.s}; }
}

using namespace geo;

struct BIT {
    vector<array<int,3>> toUpd;
    vector<pair<array<int,3>,int*>> toQuery;
    vi m, bit;
    
    void clr() {
        toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
    }
    
    void upd(int x, int y) {
        for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(int x, int y, int* z) {
        for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X)) 
            (*z) += y*bit[X];
    }
    
    void prop() {
        for (auto x: toUpd) m.pb(x[1]);
        m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
        bit.resize(sz(m));
        sort(all(toUpd)), sort(all(toQuery));
        
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};

int N,M,group[MX],ans[100001];
vi member[MX];
pi pos[MX], h[2];
pi POS[MX];
pair<pi,pi> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;

void process1(int x) {
    z.clr();
    array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+N,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+N,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+N,POS[a].s+N,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}

void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}

void process(int x) {
    if ((ll)sz(member[x])*sz(query[x]) >= N) process1(x);
    else process2(x);
}

int half(pi x) {
    if (x.s != 0) return x.s > 0;
    return x.f > 0;
}

ll area(pi a, pi b) {
    return (ll)a.f*b.s-(ll)a.s*b.f;
}

ll area(pi a, pi b, pi c) {
    b.f -= a.f, b.s -= a.s;
    c.f -= a.f, c.s -= a.s;
    return area(b,c);
}

bool cmp(pi a, pi b) {
    if (half(a) != half(b)) return half(a) < half(b);
    return area(a,b) > 0;
}

pi nor(pi x) {
    while (x.f < 0) x.f += N, x.s += N;
    while (x.f >= N) x.f -= N, x.s -= N;
    return x;
}

void genCoordinate(int ind) {
    vector<pair<pi,int>> v;
    FOR(i,1,N+1) v.pb({pos[i]-h[ind],i});
    sort(all(v),[](auto a, auto b) { return cmp(a.f,b.f); });
    int cur = 0;
    F0R(i,N) {
        while (cur < i+N && area(v[i].f,v[cur%N].f) >= 0) cur ++;
        if (ind == 0) POS[v[i].s].f = i;
        else POS[v[i].s].s = i;
        
        if (area(h[0],h[1],pos[v[i].s]) > 0) {
            if (ind == 0) BOUND[v[i].s].f = nor({cur-1,i+N-1});
            else BOUND[v[i].s].s = nor({i,cur-1});
        } else {
            if (ind == 0) BOUND[v[i].s].f = nor({i,cur-1});
            else BOUND[v[i].s].s = nor({cur-1,i+N-1});
        }
    }
}

void input() {
    //freopen("Input.txt","r",stdin);
    //freopen("Output.txt","w",stdout);
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    cin >> h[0] >> h[1];
    genCoordinate(0);
    genCoordinate(1);
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    FOR(i,1,M+1) {
        z.clr();
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+N,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+N,1});
            z.toUpd.pb({POS[a].f+N,POS[a].s+N,1});
        }
        z.prop();
    }
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# 결과 실행 시간 메모리 Grader output
1 Correct 10 ms 3000 KB Output is correct
2 Correct 21 ms 3300 KB Output is correct
3 Correct 136 ms 3576 KB Output is correct
4 Correct 185 ms 6732 KB Output is correct
5 Correct 82 ms 7128 KB Output is correct
6 Correct 8 ms 7128 KB Output is correct
7 Correct 7 ms 7128 KB Output is correct
8 Correct 9 ms 7128 KB Output is correct
9 Correct 8 ms 7128 KB Output is correct
10 Correct 8 ms 7128 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 73 ms 7868 KB Output is correct
2 Correct 202 ms 8456 KB Output is correct
3 Correct 87 ms 8456 KB Output is correct
4 Correct 42 ms 8456 KB Output is correct
5 Correct 38 ms 8456 KB Output is correct
6 Correct 72 ms 8456 KB Output is correct
7 Correct 70 ms 8456 KB Output is correct
8 Correct 73 ms 8456 KB Output is correct
9 Correct 52 ms 8456 KB Output is correct
10 Correct 62 ms 8456 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 10 ms 3000 KB Output is correct
2 Correct 21 ms 3300 KB Output is correct
3 Correct 136 ms 3576 KB Output is correct
4 Correct 185 ms 6732 KB Output is correct
5 Correct 82 ms 7128 KB Output is correct
6 Correct 8 ms 7128 KB Output is correct
7 Correct 7 ms 7128 KB Output is correct
8 Correct 9 ms 7128 KB Output is correct
9 Correct 8 ms 7128 KB Output is correct
10 Correct 8 ms 7128 KB Output is correct
11 Correct 73 ms 7868 KB Output is correct
12 Correct 202 ms 8456 KB Output is correct
13 Correct 87 ms 8456 KB Output is correct
14 Correct 42 ms 8456 KB Output is correct
15 Correct 38 ms 8456 KB Output is correct
16 Correct 72 ms 8456 KB Output is correct
17 Correct 70 ms 8456 KB Output is correct
18 Correct 73 ms 8456 KB Output is correct
19 Correct 52 ms 8456 KB Output is correct
20 Correct 62 ms 8456 KB Output is correct
21 Correct 74 ms 8456 KB Output is correct
22 Correct 206 ms 8456 KB Output is correct
23 Correct 1423 ms 8456 KB Output is correct
24 Correct 2161 ms 8876 KB Output is correct
25 Correct 234 ms 8876 KB Output is correct
26 Correct 134 ms 9172 KB Output is correct
27 Correct 57 ms 9172 KB Output is correct
28 Correct 71 ms 9172 KB Output is correct
29 Incorrect 252 ms 12580 KB Output isn't correct
30 Halted 0 ms 0 KB -