답안 #69410

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
69410 2018-08-20T19:11:23 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
4000 ms 22496 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
namespace geo {
    template<class T> istream& operator>> (istream& is, complex<T>& p) {
        T value;
        is >> value; p.real(value);
        is >> value; p.imag(value);
        return is;
    }
    void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}
 
using namespace geo;
 
struct BIT {
    vector<array<ld,3>> toUpd;
    vector<pair<array<ld,3>,int*>> toQuery;
    vd m;
    vi bit;
    
    void clr() {
        toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
    }
    
    void upd(ld x, int y) {
        for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(ld x, int y, int* z) {
        for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X)) 
            (*z) += y*bit[X];
    }
    
    void prop() {
        for (auto x: toUpd) m.pb(x[1]);
        m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
        bit.resize(sz(m));
        sort(all(toUpd)), sort(all(toQuery));
        
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};
 
int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pd POS[MX];
pair<pd,pd> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;
 
void process1(int x) {
    z.clr();
    array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+2*M_PIl,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}
 
void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}
 
void process(int x) {
    if (sz(member[x]) >= 800) process1(x);
    else process2(x);
}
 
int get() {
    int z = 1e9;
    return rand() % (2*z+1)-z;
}
 
cd gen() { return {get(),get()}; }
 
void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        //pos[i] = gen();
        //group[i] = rand() % M+1;
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    //h[0] = gen();
    //h[1] = gen();
    F0R(i,2) cin >> h[i];
    FOR(i,1,N+1) {
        POS[i].f = arg(pos[i]-h[0]);
        POS[i].s = arg(pos[i]-h[1]);
        if (area(h[0],h[1],pos[i]) > 0) BOUND[i] = {{POS[i].f-M_PIl,POS[i].f},{POS[i].s,POS[i].s+M_PIl}};
        else BOUND[i] = {{POS[i].f,POS[i].f+M_PIl},{POS[i].s-M_PIl,POS[i].s}};
        nor(BOUND[i].f); nor(BOUND[i].s);
    }
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        // int f = rand() % M+1, g = rand() % M+1;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    int tmp = 0;
    FOR(i,1,M+1) {
        z.clr();
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+2*M_PIl,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1});
        }
        tmp += sz(z.toQuery);
        z.prop();
    }
    // cout << tmp << "\n";
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/

Compilation message

dragon2.cpp: In function 'cd gen()':
dragon2.cpp:139:23: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
 cd gen() { return {get(),get()}; }
                    ~~~^~
dragon2.cpp:139:29: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
 cd gen() { return {get(),get()}; }
                          ~~~^~
# 결과 실행 시간 메모리 Grader output
1 Correct 27 ms 4592 KB Output is correct
2 Correct 34 ms 4592 KB Output is correct
3 Correct 191 ms 4592 KB Output is correct
4 Correct 301 ms 6176 KB Output is correct
5 Correct 113 ms 6380 KB Output is correct
6 Correct 9 ms 6380 KB Output is correct
7 Correct 9 ms 6380 KB Output is correct
8 Correct 25 ms 6380 KB Output is correct
9 Correct 21 ms 6380 KB Output is correct
10 Correct 20 ms 6380 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 285 ms 19972 KB Output is correct
2 Correct 715 ms 19972 KB Output is correct
3 Correct 113 ms 19972 KB Output is correct
4 Correct 65 ms 19972 KB Output is correct
5 Correct 53 ms 19972 KB Output is correct
6 Correct 265 ms 20000 KB Output is correct
7 Correct 270 ms 20128 KB Output is correct
8 Correct 279 ms 20128 KB Output is correct
9 Correct 214 ms 20128 KB Output is correct
10 Correct 218 ms 20128 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 27 ms 4592 KB Output is correct
2 Correct 34 ms 4592 KB Output is correct
3 Correct 191 ms 4592 KB Output is correct
4 Correct 301 ms 6176 KB Output is correct
5 Correct 113 ms 6380 KB Output is correct
6 Correct 9 ms 6380 KB Output is correct
7 Correct 9 ms 6380 KB Output is correct
8 Correct 25 ms 6380 KB Output is correct
9 Correct 21 ms 6380 KB Output is correct
10 Correct 20 ms 6380 KB Output is correct
11 Correct 285 ms 19972 KB Output is correct
12 Correct 715 ms 19972 KB Output is correct
13 Correct 113 ms 19972 KB Output is correct
14 Correct 65 ms 19972 KB Output is correct
15 Correct 53 ms 19972 KB Output is correct
16 Correct 265 ms 20000 KB Output is correct
17 Correct 270 ms 20128 KB Output is correct
18 Correct 279 ms 20128 KB Output is correct
19 Correct 214 ms 20128 KB Output is correct
20 Correct 218 ms 20128 KB Output is correct
21 Correct 299 ms 20128 KB Output is correct
22 Correct 675 ms 20128 KB Output is correct
23 Correct 2550 ms 20128 KB Output is correct
24 Correct 3727 ms 20128 KB Output is correct
25 Correct 350 ms 20128 KB Output is correct
26 Correct 165 ms 20128 KB Output is correct
27 Correct 61 ms 20128 KB Output is correct
28 Correct 59 ms 20128 KB Output is correct
29 Correct 261 ms 21896 KB Output is correct
30 Correct 256 ms 22168 KB Output is correct
31 Correct 282 ms 22496 KB Output is correct
32 Correct 1308 ms 22496 KB Output is correct
33 Execution timed out 4046 ms 22496 KB Time limit exceeded
34 Halted 0 ms 0 KB -