# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
69408 |
2018-08-20T19:09:22 Z |
Benq |
Dragon 2 (JOI17_dragon2) |
C++14 |
|
4000 ms |
20040 KB |
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
namespace geo {
template<class T> istream& operator>> (istream& is, complex<T>& p) {
T value;
is >> value; p.real(value);
is >> value; p.imag(value);
return is;
}
void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}
using namespace geo;
struct BIT {
vector<array<ld,3>> toUpd;
vector<pair<array<ld,3>,int*>> toQuery;
vd m;
vi bit;
void clr() {
toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
}
void upd(ld x, int y) {
for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
bit[X] += y;
}
void query(ld x, int y, int* z) {
for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X))
(*z) += y*bit[X];
}
void prop() {
for (auto x: toUpd) m.pb(x[1]);
m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
bit.resize(sz(m));
sort(all(toUpd)), sort(all(toQuery));
int ind = 0;
for (auto x: toQuery) {
while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
upd(toUpd[ind][1],toUpd[ind][2]);
ind ++;
}
query(x.f[1],x.f[2],x.s);
}
}
};
int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pd POS[MX];
pair<pd,pd> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;
void process1(int x) {
z.clr();
array<int,MX> co; co.fill(0);
for (int a: member[x]) {
z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
}
FOR(a,1,N+1) {
z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s,1},&co[group[a]]});
z.toQuery.pb({{POS[a].f,POS[a].s+2*M_PIl,1},&co[group[a]]});
z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1},&co[group[a]]});
}
z.prop();
for (auto a: query[x]) ans[a.s] = co[a.f];
}
void process2(int x) {
for (auto a: query[x]) query2[a.f].pb({x,a.s});
}
void process(int x) {
if (sz(member[x]) >= 300) process1(x);
else process2(x);
}
int get() {
int z = 1e9;
return rand() % (2*z+1)-z;
}
cd gen() { return {get(),get()}; }
void input() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N >> M;
FOR(i,1,N+1) {
//pos[i] = gen();
//group[i] = rand() % M+1;
cin >> pos[i] >> group[i];
member[group[i]].pb(i);
}
//h[0] = gen();
//h[1] = gen();
F0R(i,2) cin >> h[i];
FOR(i,1,N+1) {
POS[i].f = arg(pos[i]-h[0]);
POS[i].s = arg(pos[i]-h[1]);
if (area(h[0],h[1],pos[i]) > 0) BOUND[i] = {{POS[i].f-M_PIl,POS[i].f},{POS[i].s,POS[i].s+M_PIl}};
else BOUND[i] = {{POS[i].f,POS[i].f+M_PIl},{POS[i].s-M_PIl,POS[i].s}};
nor(BOUND[i].f); nor(BOUND[i].s);
}
}
int main() {
input();
int Q; cin >> Q;
F0R(i,Q) {
int f,g; cin >> f >> g;
// int f = rand() % M+1, g = rand() % M+1;
query[f].pb({g,i});
}
FOR(i,1,M+1) process(i);
int tmp = 0;
FOR(i,1,M+1) {
z.clr();
for (auto a: query2[i]) for (int b: member[a.f]) {
z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
}
for (int a: member[i]) {
z.toUpd.pb({POS[a].f,POS[a].s,1});
z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s,1});
z.toUpd.pb({POS[a].f,POS[a].s+2*M_PIl,1});
z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1});
}
tmp += sz(z.toQuery);
z.prop();
}
// cout << tmp << "\n";
F0R(i,Q) cout << ans[i] << "\n";
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
Compilation message
dragon2.cpp: In function 'cd gen()':
dragon2.cpp:139:23: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
cd gen() { return {get(),get()}; }
~~~^~
dragon2.cpp:139:29: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
cd gen() { return {get(),get()}; }
~~~^~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
29 ms |
4592 KB |
Output is correct |
2 |
Correct |
44 ms |
4592 KB |
Output is correct |
3 |
Correct |
179 ms |
4592 KB |
Output is correct |
4 |
Correct |
359 ms |
6140 KB |
Output is correct |
5 |
Correct |
132 ms |
6448 KB |
Output is correct |
6 |
Correct |
10 ms |
6448 KB |
Output is correct |
7 |
Correct |
11 ms |
6448 KB |
Output is correct |
8 |
Correct |
25 ms |
6448 KB |
Output is correct |
9 |
Correct |
22 ms |
6448 KB |
Output is correct |
10 |
Correct |
22 ms |
6448 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
270 ms |
20016 KB |
Output is correct |
2 |
Correct |
674 ms |
20016 KB |
Output is correct |
3 |
Correct |
2403 ms |
20016 KB |
Output is correct |
4 |
Correct |
86 ms |
20016 KB |
Output is correct |
5 |
Correct |
67 ms |
20016 KB |
Output is correct |
6 |
Correct |
249 ms |
20016 KB |
Output is correct |
7 |
Correct |
247 ms |
20016 KB |
Output is correct |
8 |
Correct |
263 ms |
20016 KB |
Output is correct |
9 |
Correct |
229 ms |
20016 KB |
Output is correct |
10 |
Correct |
196 ms |
20016 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
29 ms |
4592 KB |
Output is correct |
2 |
Correct |
44 ms |
4592 KB |
Output is correct |
3 |
Correct |
179 ms |
4592 KB |
Output is correct |
4 |
Correct |
359 ms |
6140 KB |
Output is correct |
5 |
Correct |
132 ms |
6448 KB |
Output is correct |
6 |
Correct |
10 ms |
6448 KB |
Output is correct |
7 |
Correct |
11 ms |
6448 KB |
Output is correct |
8 |
Correct |
25 ms |
6448 KB |
Output is correct |
9 |
Correct |
22 ms |
6448 KB |
Output is correct |
10 |
Correct |
22 ms |
6448 KB |
Output is correct |
11 |
Correct |
270 ms |
20016 KB |
Output is correct |
12 |
Correct |
674 ms |
20016 KB |
Output is correct |
13 |
Correct |
2403 ms |
20016 KB |
Output is correct |
14 |
Correct |
86 ms |
20016 KB |
Output is correct |
15 |
Correct |
67 ms |
20016 KB |
Output is correct |
16 |
Correct |
249 ms |
20016 KB |
Output is correct |
17 |
Correct |
247 ms |
20016 KB |
Output is correct |
18 |
Correct |
263 ms |
20016 KB |
Output is correct |
19 |
Correct |
229 ms |
20016 KB |
Output is correct |
20 |
Correct |
196 ms |
20016 KB |
Output is correct |
21 |
Correct |
298 ms |
20040 KB |
Output is correct |
22 |
Correct |
703 ms |
20040 KB |
Output is correct |
23 |
Correct |
3526 ms |
20040 KB |
Output is correct |
24 |
Execution timed out |
4011 ms |
20040 KB |
Time limit exceeded |
25 |
Halted |
0 ms |
0 KB |
- |