답안 #69405

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
69405 2018-08-20T19:07:09 Z Benq Dragon 2 (JOI17_dragon2) C++14
60 / 100
4000 ms 22160 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 30001;
 
namespace geo {
    template<class T> istream& operator>> (istream& is, complex<T>& p) {
        T value;
        is >> value; p.real(value);
        is >> value; p.imag(value);
        return is;
    }
    void nor(pd& x) { if (x.f < -M_PIl) x.f += 2*M_PIl, x.s += 2*M_PIl; }
    ld area(cd a, cd b, cd c) { return (conj(b-a)*(c-a)).imag(); }
}
 
using namespace geo;
 
struct BIT {
    vector<array<ld,3>> toUpd;
    vector<pair<array<ld,3>,int*>> toQuery;
    vd m;
    vi bit;
    
    void clr() {
        toUpd.clear(), toQuery.clear(), m.clear(), bit.clear();
    }
    
    void upd(ld x, int y) {
        for (int X = ub(all(m),x)-m.begin()-1; X < sz(bit); X += (X&-X))
            bit[X] += y;
    }
    
    void query(ld x, int y, int* z) {
        for (int X = ub(all(m),x)-m.begin()-1; X; X -= (X&-X)) 
            (*z) += y*bit[X];
    }
    
    void prop() {
        for (auto x: toUpd) m.pb(x[1]);
        m.pb(-MOD); sort(all(m)); m.erase(unique(all(m)),m.end());
        bit.resize(sz(m));
        sort(all(toUpd)), sort(all(toQuery));
        
        int ind = 0;
        for (auto x: toQuery) {
            while (ind < sz(toUpd) && toUpd[ind][0] <= x.f[0]) {
                upd(toUpd[ind][1],toUpd[ind][2]);
                ind ++;
            } 
            query(x.f[1],x.f[2],x.s);
        }
    }
};
 
int N,M,group[MX],ans[100001];
vi member[MX];
cd pos[MX], h[2];
pd POS[MX];
pair<pd,pd> BOUND[MX];
vpi query[MX], query2[MX];
BIT z;
 
void process1(int x) {
    z.clr();
    array<int,MX> co; co.fill(0);
    for (int a: member[x]) {
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.f,1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.s,1});
        z.toUpd.pb({BOUND[a].f.f,BOUND[a].s.s,-1});
        z.toUpd.pb({BOUND[a].f.s,BOUND[a].s.f,-1});
    }
    FOR(a,1,N+1) {
        z.toQuery.pb({{POS[a].f,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f,POS[a].s+2*M_PIl,1},&co[group[a]]});
        z.toQuery.pb({{POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1},&co[group[a]]});
    }
    z.prop(); 
    for (auto a: query[x]) ans[a.s] = co[a.f]; 
}
 
void process2(int x) {
    for (auto a: query[x]) query2[a.f].pb({x,a.s}); 
}
 
void process(int x) {
    if (sz(member[x])*sz(query[x]) >= 2*N) process1(x);
    else process2(x);
}
 
int get() {
    int z = 1e9;
    return rand() % (2*z+1)-z;
}
 
cd gen() { return {get(),get()}; }
 
void input() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) {
        //pos[i] = gen();
        //group[i] = rand() % M+1;
        cin >> pos[i] >> group[i];
        member[group[i]].pb(i);
    }
    //h[0] = gen();
    //h[1] = gen();
    F0R(i,2) cin >> h[i];
    FOR(i,1,N+1) {
        POS[i].f = arg(pos[i]-h[0]);
        POS[i].s = arg(pos[i]-h[1]);
        if (area(h[0],h[1],pos[i]) > 0) BOUND[i] = {{POS[i].f-M_PIl,POS[i].f},{POS[i].s,POS[i].s+M_PIl}};
        else BOUND[i] = {{POS[i].f,POS[i].f+M_PIl},{POS[i].s-M_PIl,POS[i].s}};
        nor(BOUND[i].f); nor(BOUND[i].s);
    }
}
 
int main() {
    input();
    int Q; cin >> Q;
    F0R(i,Q) {
        int f,g; cin >> f >> g;
        // int f = rand() % M+1, g = rand() % M+1;
        query[f].pb({g,i});
    }
    FOR(i,1,M+1) process(i);
    int tmp = 0;
    FOR(i,1,M+1) {
        z.clr();
        for (auto a: query2[i]) for (int b: member[a.f]) {
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.s,1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.s,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.s,BOUND[b].s.f,-1},&ans[a.s]});
            z.toQuery.pb({{BOUND[b].f.f,BOUND[b].s.f,1},&ans[a.s]});
        }
        for (int a: member[i]) {
            z.toUpd.pb({POS[a].f,POS[a].s,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s,1});
            z.toUpd.pb({POS[a].f,POS[a].s+2*M_PIl,1});
            z.toUpd.pb({POS[a].f+2*M_PIl,POS[a].s+2*M_PIl,1});
        }
        tmp += sz(z.toQuery);
        z.prop();
    }
    // cout << tmp << "\n";
    F0R(i,Q) cout << ans[i] << "\n";
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/

Compilation message

dragon2.cpp: In function 'cd gen()':
dragon2.cpp:139:23: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
 cd gen() { return {get(),get()}; }
                    ~~~^~
dragon2.cpp:139:29: warning: narrowing conversion of 'get()' from 'int' to 'long double' inside { } [-Wnarrowing]
 cd gen() { return {get(),get()}; }
                          ~~~^~
# 결과 실행 시간 메모리 Grader output
1 Correct 20 ms 3960 KB Output is correct
2 Correct 34 ms 4192 KB Output is correct
3 Correct 190 ms 4192 KB Output is correct
4 Correct 326 ms 6064 KB Output is correct
5 Correct 118 ms 6492 KB Output is correct
6 Correct 10 ms 6492 KB Output is correct
7 Correct 10 ms 6492 KB Output is correct
8 Correct 16 ms 6492 KB Output is correct
9 Correct 14 ms 6492 KB Output is correct
10 Correct 14 ms 6492 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 173 ms 16596 KB Output is correct
2 Correct 351 ms 16596 KB Output is correct
3 Correct 130 ms 16596 KB Output is correct
4 Correct 72 ms 16596 KB Output is correct
5 Correct 59 ms 16596 KB Output is correct
6 Correct 120 ms 17188 KB Output is correct
7 Correct 138 ms 17188 KB Output is correct
8 Correct 158 ms 17188 KB Output is correct
9 Correct 105 ms 17192 KB Output is correct
10 Correct 109 ms 17240 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 20 ms 3960 KB Output is correct
2 Correct 34 ms 4192 KB Output is correct
3 Correct 190 ms 4192 KB Output is correct
4 Correct 326 ms 6064 KB Output is correct
5 Correct 118 ms 6492 KB Output is correct
6 Correct 10 ms 6492 KB Output is correct
7 Correct 10 ms 6492 KB Output is correct
8 Correct 16 ms 6492 KB Output is correct
9 Correct 14 ms 6492 KB Output is correct
10 Correct 14 ms 6492 KB Output is correct
11 Correct 173 ms 16596 KB Output is correct
12 Correct 351 ms 16596 KB Output is correct
13 Correct 130 ms 16596 KB Output is correct
14 Correct 72 ms 16596 KB Output is correct
15 Correct 59 ms 16596 KB Output is correct
16 Correct 120 ms 17188 KB Output is correct
17 Correct 138 ms 17188 KB Output is correct
18 Correct 158 ms 17188 KB Output is correct
19 Correct 105 ms 17192 KB Output is correct
20 Correct 109 ms 17240 KB Output is correct
21 Correct 143 ms 17240 KB Output is correct
22 Correct 345 ms 17240 KB Output is correct
23 Correct 2558 ms 17240 KB Output is correct
24 Correct 3997 ms 17240 KB Output is correct
25 Correct 382 ms 17240 KB Output is correct
26 Correct 204 ms 17240 KB Output is correct
27 Correct 65 ms 17240 KB Output is correct
28 Correct 61 ms 17240 KB Output is correct
29 Correct 277 ms 22160 KB Output is correct
30 Correct 249 ms 22160 KB Output is correct
31 Correct 229 ms 22160 KB Output is correct
32 Correct 272 ms 22160 KB Output is correct
33 Correct 3824 ms 22160 KB Output is correct
34 Correct 181 ms 22160 KB Output is correct
35 Correct 212 ms 22160 KB Output is correct
36 Correct 183 ms 22160 KB Output is correct
37 Correct 179 ms 22160 KB Output is correct
38 Execution timed out 4026 ms 22160 KB Time limit exceeded
39 Halted 0 ms 0 KB -