Submission #687707

# Submission time Handle Problem Language Result Execution time Memory
687707 2023-01-26T21:29:35 Z QwertyPi Paths (RMI21_paths) C++14
68 / 100
595 ms 21316 KB
#include <bits/stdc++.h>
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("Ofast")
#define int long long
using namespace std;

const int MAXN = 1e5 + 11;
vector<pair<int, int>> G[MAXN];
int w[MAXN], mx_dis[MAXN];
int to[MAXN], a[MAXN], l[MAXN], r[MAXN];
int leaf_cnt = 0;
void dfs(int v, int pa = -1){
    int sons_cnt = 0;
    l[v] = MAXN, r[v] = -1;
    for(auto& [u, we] : G[v]){
        if(u != pa){
            sons_cnt++;
            w[u] = we; dfs(u, v);
            if(mx_dis[u] + w[u] > mx_dis[v]){
                to[v] = to[u];
                mx_dis[v] = mx_dis[u] + w[u];
            }
            l[v] = min(l[v], l[u]), r[v] = max(r[v], r[u]);
        }
    }
    if(sons_cnt == 0){
        to[v] = ++leaf_cnt; l[v] = r[v] = leaf_cnt;
    }
    a[to[v]] += w[v];
}

namespace Treap{

    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    struct node{
        int key, size, sum, prior;
        node *ll, *rr;
        node(int key) : key(key), size(1), sum(key), prior(rng()), ll(nullptr), rr(nullptr) {};
    };

    int size(node* t){
        return t ? t->size : 0;
    }
    int sum(node* t){
        return t ? t->sum : 0;
    }
    void maintain(node*& t){
        if(!t) return;
        t->size = size(t->ll) + 1 + size(t->rr);
        t->sum = sum(t->ll) + t->key + sum(t->rr);
    }
    void _crawl(node* t){
        if(!t) return;
        if(t->ll) _crawl(t->ll);
        cout << t->key << ' ';
        if(t->rr) _crawl(t->rr);
    }
    void crawl(node* t){
        _crawl(t); cout << endl;
    }
    void split_size(node* t, node*& l, node*& r, int l_size){
        if(!t) return void(l = r = nullptr);
        if(size(t->ll) >= l_size) split_size(t->ll, l, t->ll, l_size), r = t;
        else split_size(t->rr, t->rr, r, l_size - size(t->ll) - 1), l = t;
        maintain(l); maintain(r);
    }
    void split_key(node* t, node*& l, node*& r, int key){
        if(!t) return void(l = r = nullptr);
        if(t->key >= key) split_key(t->ll, l, t->ll, key), r = t;
        else split_key(t->rr, t->rr, r, key), l = t; 
        maintain(l); maintain(r);
    }
    void merge(node*& t, node* l, node* r){
        if(!l || !r) t = l ? l : r;
        else if(l->prior > r->prior) merge(l->rr, l->rr, r), t = l;
        else merge(r->ll, l, r->ll), t = r;
        maintain(t);
    }
    node* subtree_min(node* t){
        while(t->ll) t = t->ll;
        return t;
    }
    node *a = nullptr;
    void add(int key){
        node *l, *v, *r;
        v = new node(key);
        split_key(a, l, r, key);
        merge(r, v, r);
        merge(a, l, r);
    }
    void erase(int key){
        node *l, *m, *r;
        split_key(a, l, m, key);
        split_size(m, m, r, 1);
        delete m;
        merge(a, l, r);
    }
    int kth_max_sum(int k){
        node *l, *r;
        split_size(a, l, r, max(0LL, size(a) - k));
        int res = sum(r);
        merge(a, l, r);
        return res;
    }
};

namespace Segtree{
    int t[MAXN << 2], a[MAXN];
    int cmp(int q1, int q2){
        if(q1 == -1 || q2 == -1) return q1 == -1 ? q2 : q1;
        else return a[q1] > a[q2] ? q1 : q2;
    }
    void upd(int i, int va, int v, int l, int r){
        if(l == r) { a[i] = va; t[v] = i; return; }
        int m = (l + r) >> 1;
        if(i <= m) upd(i, va, v * 2 + 1, l, m);
        else upd(i, va, v * 2 + 2, m + 1, r);
        t[v] = cmp(t[v * 2 + 1], t[v * 2 + 2]);
    }
    int qry_max(int ql, int qr, int v, int l, int r){
        if(qr < l || r < ql) return -1;
        if(ql <= l && r <= qr) return t[v];
        int m = (l + r) >> 1;
        int q1 = qry_max(ql, qr, v * 2 + 1, l, m);
        int q2 = qry_max(ql, qr, v * 2 + 2, m + 1, r);
        return cmp(q1, q2);
    }
};

int ans[MAXN]; int N, K; 
void dfs2(int v, int pa = -1){
    ans[v] = Treap::kth_max_sum(K);
    for(auto& [u, we] : G[v]){
        if(u != pa){
            using Segtree::a;
            int bl = 1, br = leaf_cnt, sl = l[u], sr = r[u];
            int q1 = Segtree::qry_max(bl, sl - 1, 0, 1, leaf_cnt), q2 = Segtree::qry_max(sr + 1, br, 0, 1, leaf_cnt);
            int qo = Segtree::cmp(q1, q2); Treap::erase(a[qo]); Treap::add(a[qo] + w[u]); Segtree::upd(qo, a[qo] + w[u], 0, 1, leaf_cnt);
            int qn = Segtree::qry_max(sl, sr, 0, 1, leaf_cnt); Treap::erase(a[qn]); Treap::add(a[qn] - w[u]); Segtree::upd(qn, a[qn] - w[u], 0, 1, leaf_cnt);
            dfs2(u, v);
            Treap::erase(a[qo]); Treap::add(a[qo] - w[u]); Segtree::upd(qo, a[qo] - w[u], 0, 1, leaf_cnt);
            Treap::erase(a[qn]); Treap::add(a[qn] + w[u]); Segtree::upd(qn, a[qn] + w[u], 0, 1, leaf_cnt);
        }
    }
}

int32_t main(){
    cin.tie(0); cout.tie(0);
    cin >> N >> K; int sum_w = 0;
    for(int i = 0; i < N - 1; i++){
        int u, v, w; cin >> u >> v >> w;
        G[u].push_back({v, w});
        G[v].push_back({u, w});
        sum_w += w;
    }
    
    if(N == 2){
        cout << sum_w << endl;
        cout << sum_w << endl;
        return 0;
    }

    int rt = 1;
    if(G[rt].size() == 1) rt = G[rt][0].first;
    assert(G[rt].size() != 1);
    dfs(rt);
    for(int i = 1; i <= leaf_cnt; i++) Treap::add(a[i]);
    for(int i = 1; i <= leaf_cnt; i++) Segtree::upd(i, a[i], 0, 1, leaf_cnt);
    dfs2(rt);
    for(int i = 1; i <= N; i++) cout << ans[i] << '\n';
}

Compilation message

Main.cpp: In function 'void dfs(long long int, long long int)':
Main.cpp:15:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
   15 |     for(auto& [u, we] : G[v]){
      |               ^
Main.cpp: In function 'void dfs2(long long int, long long int)':
Main.cpp:133:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  133 |     for(auto& [u, we] : G[v]){
      |               ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 3 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 3 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 5 ms 2772 KB Output is correct
9 Correct 4 ms 2876 KB Output is correct
10 Correct 4 ms 2772 KB Output is correct
11 Correct 5 ms 2772 KB Output is correct
12 Correct 5 ms 2772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 3 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 5 ms 2772 KB Output is correct
9 Correct 4 ms 2876 KB Output is correct
10 Correct 4 ms 2772 KB Output is correct
11 Correct 5 ms 2772 KB Output is correct
12 Correct 5 ms 2772 KB Output is correct
13 Correct 9 ms 3028 KB Output is correct
14 Correct 7 ms 3028 KB Output is correct
15 Correct 6 ms 2900 KB Output is correct
16 Correct 8 ms 2956 KB Output is correct
17 Correct 7 ms 2900 KB Output is correct
18 Correct 6 ms 2900 KB Output is correct
19 Correct 9 ms 3000 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 536 ms 18596 KB Output is correct
2 Correct 528 ms 21004 KB Output is correct
3 Correct 419 ms 14412 KB Output is correct
4 Correct 528 ms 18632 KB Output is correct
5 Correct 561 ms 19576 KB Output is correct
6 Correct 508 ms 18748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 3 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 5 ms 2772 KB Output is correct
9 Correct 4 ms 2876 KB Output is correct
10 Correct 4 ms 2772 KB Output is correct
11 Correct 5 ms 2772 KB Output is correct
12 Correct 5 ms 2772 KB Output is correct
13 Correct 9 ms 3028 KB Output is correct
14 Correct 7 ms 3028 KB Output is correct
15 Correct 6 ms 2900 KB Output is correct
16 Correct 8 ms 2956 KB Output is correct
17 Correct 7 ms 2900 KB Output is correct
18 Correct 6 ms 2900 KB Output is correct
19 Correct 9 ms 3000 KB Output is correct
20 Correct 536 ms 18596 KB Output is correct
21 Correct 528 ms 21004 KB Output is correct
22 Correct 419 ms 14412 KB Output is correct
23 Correct 528 ms 18632 KB Output is correct
24 Correct 561 ms 19576 KB Output is correct
25 Correct 508 ms 18748 KB Output is correct
26 Correct 595 ms 19032 KB Output is correct
27 Correct 520 ms 20984 KB Output is correct
28 Correct 498 ms 21316 KB Output is correct
29 Correct 427 ms 14668 KB Output is correct
30 Incorrect 564 ms 18976 KB Output isn't correct
31 Halted 0 ms 0 KB -