답안 #684495

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
684495 2023-01-21T11:03:45 Z ghostwriter Palindromi (COCI22_palindromi) C++17
110 / 110
389 ms 77788 KB
#include <bits/stdc++.h>
using namespace std;
#define st first
#define nd second
#define bg begin
#define ed end
#define ft front
#define bk back
#define pb push_back
#define pf push_front
#define _pb pop_back
#define _pf pop_front
#define lb lower_bound
#define ub upper_bound
#define ins insert
#define ers erase
#define all(x) (x).bg(), (x).ed()
#define sz(x) (int)(x).size()
#define mtp make_tuple
#define ll long long
#define ull unsigned long long
#define db double
#define ldb long double
#define pi pair<int, int>
#define pll pair<ll, ll>
#define vi vector<int>
#define vll vector<ll>
#define vpi vector<pi>
#define vpll vector<pll>
#define str string
#define FOR(i, l, r) for (int i = (l); i <= (r); ++i)
#define FOS(i, r, l) for (int i = (r); i >= (l); --i)
#define FRN(i, n) for (int i = 0; i < (n); ++i)
#define FSN(i, n) for (int i = (n) - 1; i >= 0; --i)
#define EACH(i, x) for (auto &i : (x))
#define WHILE while
template<typename T> T gcd(T a, T b) { WHILE(b) { a %= b; swap(a, b); } return a; }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
#define file "TEST"
mt19937 rd(chrono::steady_clock::now().time_since_epoch().count());
ll rand(ll l, ll r) { return uniform_int_distribution<ll>(l, r)(rd); }
const int oo = 1e9 + 5;
const pi M = {1e9 + 7, 1e9 + 9};
const pi base = {37, 127};
const int N = 1e5 + 5;
int n, a[N], p[N], lm[N], rm[N], nxt[N], pos[N], len[N], len1[N], LOG[N];
pi e[N], h[N], h1[N], P[N], c[N][17], c1[N][17], posl[N], posr[N];
vi a1;
set<pi> s[N];
int getp(int x) { return x == p[x]? x : p[x] = getp(p[x]); }
void join(int x, int y) {
    int px = getp(x), py = getp(y);
    p[py] = px;
    nxt[rm[px]] = lm[py];
    rm[px] = rm[py];
}
void trans() {
    FRN(i, n) {
        p[i] = lm[i] = rm[i] = i;
        nxt[i] = -1;
    }
    FRN(i, n - 1) join(e[i].st, e[i].nd);
    int fp = lm[getp(0)];
    WHILE(fp != -1) {
        a1.pb(fp);
        fp = nxt[fp];
    }
    FRN(i, n) pos[a1[i]] = i;
    vi a2(n);
    FRN(i, n) a2[i] = a[i];
    FRN(i, n) a[pos[i]] = a2[i];
}
void buildh() {
    FRN(i, n) {
        h[i].st = (1LL * (i? h[i - 1].st : 0) * base.st + a[i] + 1) % M.st;
        h[i].nd = (1LL * (i? h[i - 1].nd : 0) * base.nd + a[i] + 1) % M.nd;
    }
    FSN(i, n) {
        h1[i].st = (1LL * (i + 1 < n? h1[i + 1].st : 0) * base.st + a[i] + 1) % M.st;
        h1[i].nd = (1LL * (i + 1 < n? h1[i + 1].nd : 0) * base.nd + a[i] + 1) % M.nd;
    }
    P[0] = {1, 1};
    FOR(i, 1, n) {
        P[i].st = 1LL * P[i - 1].st * base.st % M.st;
        P[i].nd = 1LL * P[i - 1].nd * base.nd % M.nd;
    }
}
pi get(int l, int r) {
    pi ans;
    ans.st = (h[r].st - 1LL * (l? h[l - 1].st : 0) * P[r - l + 1].st % M.st + M.st) % M.st;
    ans.nd = (h[r].nd - 1LL * (l? h[l - 1].nd : 0) * P[r - l + 1].nd % M.nd + M.nd) % M.nd;
    return ans;
}
pi get1(int l, int r) {
    pi ans;
    ans.st = (h1[l].st - 1LL * (r + 1 < n? h1[r + 1].st : 0) * P[r - l + 1].st % M.st + M.st) % M.st;
    ans.nd = (h1[l].nd - 1LL * (r + 1 < n? h1[r + 1].nd : 0) * P[r - l + 1].nd % M.nd + M.nd) % M.nd;
    return ans;
}
bool check(int l, int r) { return get(l, r) == get1(l, r); }
void buildp() {
    FRN(i, n) {
        int l = 0, r = min(i, n - 1 - i);
        WHILE(l <= r) {
            int mid = l + (r - l) / 2;
            if (check(i - mid, i + mid)) {
                len[i] = mid;
                l = mid + 1;
            }
            else r = mid - 1;
        }
    }
    len1[n - 1] = -1;
    FRN(i, n - 1) {
        len1[i] = -1;
        if (a[i] != a[i + 1]) continue;
        int l = 0, r = min(i, n - 2 - i);
        WHILE(l <= r) {
            int mid = l + (r - l) / 2;
            if (check(i - mid, i + 1 + mid)) {
                len1[i] = mid;
                l = mid + 1;
            }
            else r = mid - 1;
        }
    }
}
pi best(const pi &a, const pi &b) { return {min(a.st, b.st), max(a.nd, b.nd)}; }
void buildstb() {
    FRN(i, n) {
        c1[i][0] = {oo, -oo};
        c[i][0] = {i - len[i], i + len[i]};
        if (len1[i] != -1) c1[i][0] = {i - len1[i], i + 1 + len1[i]};
    }
    FOR(j, 1, 16)
    FRN(i, n) {
        if (i + (1 << j) - 1 >= n) break;
        c[i][j] = best(c[i][j - 1], c[i + (1 << (j - 1))][j - 1]);
        c1[i][j] = best(c1[i][j - 1], c1[i + (1 << (j - 1))][j - 1]);
    }
    FOR(i, 1, n) LOG[i] = log2(i);
}
void buildplr() {
    FRN(i, n) {
        int l = 0, r = i;
        WHILE(l <= r) {
            int mid = l + (r - l) / 2;
            if (mid - i + mid >= 0) {
                posl[i].st = mid;
                r = mid - 1;
            }
            else l = mid + 1;
        }
        l = 0; r = i - 1;
        WHILE(l <= r) {
            int mid = l + (r - l) / 2;
            if (mid - i + mid + 1 >= 0) {
                posl[i].nd = mid;
                r = mid - 1;
            }
            else l = mid + 1;
        }
    }
    FRN(i, n) {
        int l = 0, r = i;
        WHILE(l <= r) {
            int mid = l + (r - l) / 2;
            if (mid + mid <= i) {
                posr[i].st = mid;
                l = mid + 1;
            }
            else r = mid - 1;
        }
        l = 0; r = i - 1;
        WHILE(l <= r) {
            int mid = l + (r - l) / 2;
            if (mid + mid + 1 <= i) {
                posr[i].nd = mid;
                l = mid + 1;
            }
            else r = mid - 1;
        }
    }
}
pi getc(int l, int r) {
    int len = LOG[r - l + 1];
    return best(c[l][len], c[r - (1 << len) + 1][len]);
}
pi getc1(int l, int r) {
    int len = LOG[r - l + 1];
    return best(c1[l][len], c1[r - (1 << len) + 1][len]);
}
pi getl(int l, int r) {
    int tmpp = l + posl[r - l].st, ln = tmpp, rn = r;
    pi ans = {oo, oo};
    WHILE(ln <= rn) {
        int mid = ln + (rn - ln) / 2;
        pi tmp = getc(tmpp, mid);
        if (tmp.nd >= r) {
            ans = min(ans, {mid, 0});
            rn = mid - 1;
        }
        else ln = mid + 1;
    }
    if (l == r) return ans;
    tmpp = l + posl[r - l].nd; ln = tmpp; rn = r - 1;
    WHILE(ln <= rn) {
        int mid = ln + (rn - ln) / 2;
        if (mid - r + mid + 1 < l) {
            ln = mid + 1;
            continue;
        }
        pi tmp = getc1(tmpp, mid);
        if (tmp.nd >= r) {
            ans = min(ans, {mid, 1});
            rn = mid - 1;
        }
        else ln = mid + 1;
    }
    return ans;
}
pi getr(int l, int r) {
    int tmpp = l + posr[r - l].st, ln = l, rn = tmpp;
    pi ans = {0, 0};
    WHILE(ln <= rn) {
        int mid = ln + (rn - ln) / 2;
        pi tmp = getc(mid, tmpp);
        if (tmp.st <= l) {
            ans = max(ans, {mid, 0});
            ln = mid + 1;
        }
        else rn = mid - 1;
    }
    if (l == r) return ans;
    tmpp = l + posr[r - l].nd; ln = l; rn = tmpp;
    WHILE(ln <= rn) {
        int mid = ln + (rn - ln) / 2;
        if (mid + 1 + mid - l > r) {
            rn = mid - 1;
            continue;
        }
        pi tmp = getc1(mid, tmpp);
        if (tmp.st <= l) {
            ans = max(ans, {mid, 1});
            ln = mid + 1;
        }
        else rn = mid - 1;
    }
    return ans;
}
void join1(int x, int y) {
    int px = getp(x), py = getp(y);
    if (rm[px] - lm[px] > rm[py] - lm[py]) {
        FOR(i, lm[py], rm[py]) {
            pi tmp = getl(lm[px], i);
            s[px].ins(get(tmp.st - i + tmp.st + tmp.nd, i));
        }
        p[py] = px;
        rm[px] = rm[py];
    }
    else {
        FOR(i, lm[px], rm[px]) {
            pi tmp = getr(i, rm[py]);
            s[py].ins(get(i, tmp.st + tmp.st - i + tmp.nd));
        }
        p[px] = py;
        lm[py] = lm[px];
    }
}
void ansq() {
    FRN(i, n) {
        p[i] = i;
        lm[i] = rm[i] = pos[i];
        s[i].ins(get(pos[i], pos[i]));
    }
    FRN(i, n - 1) {
        join1(e[i].st, e[i].nd);
        cout << sz(s[getp(e[i].st)]) << '\n';
    }
}
signed main() {
    ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
//    freopen(file".inp", "r", stdin);
//    freopen(file".out", "w", stdout);
    cin >> n;
    FRN(i, n) {
        char c;
        cin >> c;
        a[i] = c - '0';
    }
    FRN(i, n - 1) {
        cin >> e[i].st >> e[i].nd;
        --e[i].st;
        --e[i].nd;
    }
    trans();
    buildh();
    buildp();
    buildstb();
    buildplr();
    ansq();
    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 5068 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 3 ms 5160 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 4 ms 5164 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 5160 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 3 ms 5076 KB Output is correct
10 Correct 3 ms 5076 KB Output is correct
11 Correct 3 ms 5284 KB Output is correct
12 Correct 4 ms 5076 KB Output is correct
13 Correct 3 ms 5076 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 5068 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 3 ms 5160 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 4 ms 5164 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 5160 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 3 ms 5076 KB Output is correct
10 Correct 3 ms 5076 KB Output is correct
11 Correct 3 ms 5284 KB Output is correct
12 Correct 4 ms 5076 KB Output is correct
13 Correct 3 ms 5076 KB Output is correct
14 Correct 3 ms 5076 KB Output is correct
15 Correct 4 ms 5588 KB Output is correct
16 Correct 5 ms 5544 KB Output is correct
17 Correct 4 ms 5588 KB Output is correct
18 Correct 4 ms 5588 KB Output is correct
19 Correct 4 ms 5552 KB Output is correct
20 Correct 4 ms 5412 KB Output is correct
21 Correct 4 ms 5460 KB Output is correct
22 Correct 5 ms 5508 KB Output is correct
23 Correct 3 ms 5520 KB Output is correct
24 Correct 4 ms 5460 KB Output is correct
25 Correct 4 ms 5588 KB Output is correct
26 Correct 4 ms 5548 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 160 ms 44500 KB Output is correct
2 Correct 193 ms 48424 KB Output is correct
3 Correct 147 ms 44064 KB Output is correct
4 Correct 192 ms 49072 KB Output is correct
5 Correct 151 ms 46204 KB Output is correct
6 Correct 186 ms 47540 KB Output is correct
7 Correct 153 ms 45952 KB Output is correct
8 Correct 181 ms 46888 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 5068 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 3 ms 5160 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 4 ms 5164 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 5160 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 3 ms 5076 KB Output is correct
10 Correct 3 ms 5076 KB Output is correct
11 Correct 3 ms 5284 KB Output is correct
12 Correct 4 ms 5076 KB Output is correct
13 Correct 3 ms 5076 KB Output is correct
14 Correct 3 ms 5076 KB Output is correct
15 Correct 4 ms 5588 KB Output is correct
16 Correct 5 ms 5544 KB Output is correct
17 Correct 4 ms 5588 KB Output is correct
18 Correct 4 ms 5588 KB Output is correct
19 Correct 4 ms 5552 KB Output is correct
20 Correct 4 ms 5412 KB Output is correct
21 Correct 4 ms 5460 KB Output is correct
22 Correct 5 ms 5508 KB Output is correct
23 Correct 3 ms 5520 KB Output is correct
24 Correct 4 ms 5460 KB Output is correct
25 Correct 4 ms 5588 KB Output is correct
26 Correct 4 ms 5548 KB Output is correct
27 Correct 160 ms 44500 KB Output is correct
28 Correct 193 ms 48424 KB Output is correct
29 Correct 147 ms 44064 KB Output is correct
30 Correct 192 ms 49072 KB Output is correct
31 Correct 151 ms 46204 KB Output is correct
32 Correct 186 ms 47540 KB Output is correct
33 Correct 153 ms 45952 KB Output is correct
34 Correct 181 ms 46888 KB Output is correct
35 Correct 2 ms 5032 KB Output is correct
36 Correct 310 ms 55656 KB Output is correct
37 Correct 247 ms 49124 KB Output is correct
38 Correct 303 ms 56728 KB Output is correct
39 Correct 264 ms 51608 KB Output is correct
40 Correct 192 ms 47504 KB Output is correct
41 Correct 175 ms 45976 KB Output is correct
42 Correct 206 ms 46828 KB Output is correct
43 Correct 151 ms 45880 KB Output is correct
44 Correct 189 ms 46616 KB Output is correct
45 Correct 160 ms 45484 KB Output is correct
46 Correct 389 ms 77788 KB Output is correct
47 Correct 274 ms 55156 KB Output is correct