답안 #683101

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
683101 2023-01-17T16:56:14 Z nutella Abracadabra (CEOI22_abracadabra) C++17
100 / 100
616 ms 47952 KB
#include <bits/stdc++.h>

using namespace std;

struct Fenwick {
    vector<int> t;
    int n, S = 0;

    Fenwick() = default;

    Fenwick(int n) : n(n), t(n + 1) {}

    void modify(int i, int v) {
        S += v;
        for (int x = i + 1; x <= n; x += x & -x) {
            t[x] += v;
        }
    }

    int sum(int i) {
        int ans = 0;
        for (int x = i + 1; x > 0; x -= x & -x) {
            ans += t[x];
        }
        return ans;
    }

    int lower_bound(int k) {
        int x = 0;
        for (int i = 1 << __lg(n); i > 0; i >>= 1) {
            if (x + i <= n && t[x + i] < k) {
                x += i;
                k -= t[x];
            }
        }
        return x;
    }
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n, q;
    cin >> n >> q;


    vector<int> a(n);

    for (int &x: a) {
        cin >> x;
        x -= 1;
    }

    vector<int> ans(q, -1);

    vector<vector<array<int, 2>>> queries(n + 1);

    for (int i = 0; i < q; ++i) {
        int t, p;
        cin >> t >> p;

        p -= 1;

        if (t == 0) {
            ans[i] = a[p];
            continue;
        }

        queries[min(t, n)].push_back({i, p});
    }

    const int logn = __lg(n) + 1;

    auto comp = [&](int i, int j) {
        return a[i] > a[j] ? i : j;
    };

    vector<vector<int>> mx(logn);

    mx[0].resize(n);
    iota(mx[0].begin(), mx[0].end(), 0);

    for (int l = 1; l < logn; ++l) {
        mx[l].resize(n - (1 << l) + 1);

        for (int i = 0; i + (1 << l) <= n; ++i) {
            mx[l][i] = comp(mx[l - 1][i], mx[l - 1][i + (1 << l - 1)]);
        }
    }

    auto rangeMax = [&](int l, int r) {
        int lg = __lg(r - l);

        return comp(mx[lg][l], mx[lg][r - (1 << lg)]);
    };

    Fenwick fn(n);

    vector<pair<int, int>> segment(n, {-1, -1});

    int pref_mx = -1;
    for (int i = 0; i < n / 2; ++i) {
        if (pref_mx < a[i]) {
            if (pref_mx != -1) {
                segment[pref_mx].second = i;
            }
            pref_mx = a[i];
            segment[pref_mx].first = i;
        }
    }
    segment[pref_mx].second = n / 2;

    pref_mx = -1;
    for (int i = n / 2; i < n; ++i) {
        if (pref_mx < a[i]) {
            if (pref_mx != -1) {
                segment[pref_mx].second = i;
            }
            pref_mx = a[i];
            segment[pref_mx].first = i;
        }
    }
    segment[pref_mx].second = n;

    for (int x = 0; x < n; ++x) {
        if (segment[x].first != -1) {
            fn.modify(x, segment[x].second - segment[x].first);
        }
    }

    auto find_next = [&](int l, int r) {
        int mx = rangeMax(l, r);
        if (l == mx) {
            return -1;
        }

        int lo = l, hi = r;
        while (lo + 1 < hi) {
            int mid = (lo + hi) >> 1;

            if (rangeMax(l, mid + 1) == l) {
                lo = mid;
            } else {
                hi = mid;
            }
        }

        return hi;
    };

    auto getValue = [&](int p) {
        p += 1;

        int x = fn.lower_bound(p);
        int sum_l = fn.sum(x - 1);

        return a[segment[x].first + (p - sum_l) - 1];
    };

    for (int _ = 1; _ <= n; ++_) {
        for (auto [i, p]: queries[_]) {
            ans[i] = getValue(p);
        }

        int x = fn.lower_bound(n / 2);

        int sum = fn.sum(x);

        if (sum == n / 2) {
            continue;
        }

        int sum_l = sum - (segment[x].second - segment[x].first);

        int cut = segment[x].first + (n / 2 - sum_l);

        fn.modify(x, cut - segment[x].second);


        int l = cut, r = segment[x].second;

        segment[x].second = cut;

        while (l < r) {
            int mid = find_next(l, r);

            if (mid == -1) {
                segment[a[l]].first = l, segment[a[l]].second = r;
            } else {
                segment[a[l]].first = l, segment[a[l]].second = mid;
            }

            fn.modify(a[l], segment[a[l]].second - segment[a[l]].first);

            l = segment[a[l]].second;
        }

    }

    for (int i = 0; i < q; ++i) {
        cout << ans[i] + 1 << '\n';
    }

    return 0;
}

Compilation message

Main.cpp: In constructor 'Fenwick::Fenwick(int)':
Main.cpp:7:9: warning: 'Fenwick::n' will be initialized after [-Wreorder]
    7 |     int n, S = 0;
      |         ^
Main.cpp:6:17: warning:   'std::vector<int> Fenwick::t' [-Wreorder]
    6 |     vector<int> t;
      |                 ^
Main.cpp:11:5: warning:   when initialized here [-Wreorder]
   11 |     Fenwick(int n) : n(n), t(n + 1) {}
      |     ^~~~~~~
Main.cpp: In function 'int main()':
Main.cpp:88:65: warning: suggest parentheses around '-' inside '<<' [-Wparentheses]
   88 |             mx[l][i] = comp(mx[l - 1][i], mx[l - 1][i + (1 << l - 1)]);
      |                                                               ~~^~~
# 결과 실행 시간 메모리 Grader output
1 Correct 254 ms 19492 KB Output is correct
2 Correct 301 ms 18192 KB Output is correct
3 Correct 284 ms 17852 KB Output is correct
4 Correct 218 ms 16700 KB Output is correct
5 Correct 226 ms 19916 KB Output is correct
6 Correct 244 ms 20564 KB Output is correct
7 Correct 224 ms 21316 KB Output is correct
8 Correct 219 ms 18916 KB Output is correct
9 Correct 226 ms 17692 KB Output is correct
10 Correct 214 ms 17840 KB Output is correct
11 Correct 216 ms 18064 KB Output is correct
12 Correct 205 ms 15012 KB Output is correct
13 Correct 210 ms 16832 KB Output is correct
14 Correct 225 ms 19328 KB Output is correct
15 Correct 220 ms 16900 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 167 ms 9212 KB Output is correct
18 Correct 185 ms 12812 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 320 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 322 ms 41720 KB Output is correct
2 Correct 315 ms 41640 KB Output is correct
3 Correct 270 ms 37040 KB Output is correct
4 Correct 275 ms 37296 KB Output is correct
5 Correct 243 ms 38016 KB Output is correct
6 Correct 255 ms 36416 KB Output is correct
7 Correct 301 ms 41260 KB Output is correct
8 Correct 285 ms 39500 KB Output is correct
9 Correct 253 ms 37476 KB Output is correct
10 Correct 291 ms 39116 KB Output is correct
11 Correct 232 ms 37168 KB Output is correct
12 Correct 252 ms 36012 KB Output is correct
13 Correct 281 ms 39316 KB Output is correct
14 Correct 253 ms 36808 KB Output is correct
15 Correct 323 ms 39992 KB Output is correct
16 Correct 34 ms 21820 KB Output is correct
17 Correct 217 ms 31956 KB Output is correct
18 Correct 200 ms 35228 KB Output is correct
19 Correct 70 ms 23612 KB Output is correct
20 Correct 93 ms 24412 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 67 ms 14156 KB Output is correct
2 Correct 61 ms 13696 KB Output is correct
3 Correct 62 ms 13388 KB Output is correct
4 Correct 54 ms 13168 KB Output is correct
5 Correct 57 ms 13900 KB Output is correct
6 Correct 47 ms 13004 KB Output is correct
7 Correct 51 ms 13676 KB Output is correct
8 Correct 49 ms 12976 KB Output is correct
9 Correct 61 ms 13576 KB Output is correct
10 Correct 42 ms 12848 KB Output is correct
11 Correct 45 ms 13312 KB Output is correct
12 Correct 43 ms 12896 KB Output is correct
13 Correct 46 ms 12748 KB Output is correct
14 Correct 50 ms 13412 KB Output is correct
15 Correct 41 ms 13112 KB Output is correct
16 Correct 15 ms 10836 KB Output is correct
17 Correct 37 ms 11692 KB Output is correct
18 Correct 38 ms 12180 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 254 ms 19492 KB Output is correct
2 Correct 301 ms 18192 KB Output is correct
3 Correct 284 ms 17852 KB Output is correct
4 Correct 218 ms 16700 KB Output is correct
5 Correct 226 ms 19916 KB Output is correct
6 Correct 244 ms 20564 KB Output is correct
7 Correct 224 ms 21316 KB Output is correct
8 Correct 219 ms 18916 KB Output is correct
9 Correct 226 ms 17692 KB Output is correct
10 Correct 214 ms 17840 KB Output is correct
11 Correct 216 ms 18064 KB Output is correct
12 Correct 205 ms 15012 KB Output is correct
13 Correct 210 ms 16832 KB Output is correct
14 Correct 225 ms 19328 KB Output is correct
15 Correct 220 ms 16900 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 167 ms 9212 KB Output is correct
18 Correct 185 ms 12812 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 320 KB Output is correct
21 Correct 322 ms 41720 KB Output is correct
22 Correct 315 ms 41640 KB Output is correct
23 Correct 270 ms 37040 KB Output is correct
24 Correct 275 ms 37296 KB Output is correct
25 Correct 243 ms 38016 KB Output is correct
26 Correct 255 ms 36416 KB Output is correct
27 Correct 301 ms 41260 KB Output is correct
28 Correct 285 ms 39500 KB Output is correct
29 Correct 253 ms 37476 KB Output is correct
30 Correct 291 ms 39116 KB Output is correct
31 Correct 232 ms 37168 KB Output is correct
32 Correct 252 ms 36012 KB Output is correct
33 Correct 281 ms 39316 KB Output is correct
34 Correct 253 ms 36808 KB Output is correct
35 Correct 323 ms 39992 KB Output is correct
36 Correct 34 ms 21820 KB Output is correct
37 Correct 217 ms 31956 KB Output is correct
38 Correct 200 ms 35228 KB Output is correct
39 Correct 70 ms 23612 KB Output is correct
40 Correct 93 ms 24412 KB Output is correct
41 Correct 67 ms 14156 KB Output is correct
42 Correct 61 ms 13696 KB Output is correct
43 Correct 62 ms 13388 KB Output is correct
44 Correct 54 ms 13168 KB Output is correct
45 Correct 57 ms 13900 KB Output is correct
46 Correct 47 ms 13004 KB Output is correct
47 Correct 51 ms 13676 KB Output is correct
48 Correct 49 ms 12976 KB Output is correct
49 Correct 61 ms 13576 KB Output is correct
50 Correct 42 ms 12848 KB Output is correct
51 Correct 45 ms 13312 KB Output is correct
52 Correct 43 ms 12896 KB Output is correct
53 Correct 46 ms 12748 KB Output is correct
54 Correct 50 ms 13412 KB Output is correct
55 Correct 41 ms 13112 KB Output is correct
56 Correct 15 ms 10836 KB Output is correct
57 Correct 37 ms 11692 KB Output is correct
58 Correct 38 ms 12180 KB Output is correct
59 Correct 1 ms 212 KB Output is correct
60 Correct 1 ms 212 KB Output is correct
61 Correct 616 ms 47952 KB Output is correct
62 Correct 527 ms 46404 KB Output is correct
63 Correct 565 ms 45160 KB Output is correct
64 Correct 403 ms 44828 KB Output is correct
65 Correct 444 ms 46536 KB Output is correct
66 Correct 478 ms 44536 KB Output is correct
67 Correct 348 ms 44348 KB Output is correct
68 Correct 366 ms 42400 KB Output is correct
69 Correct 400 ms 45168 KB Output is correct
70 Correct 346 ms 41248 KB Output is correct
71 Correct 300 ms 44408 KB Output is correct
72 Correct 325 ms 41532 KB Output is correct
73 Correct 328 ms 42456 KB Output is correct
74 Correct 353 ms 44304 KB Output is correct
75 Correct 327 ms 42908 KB Output is correct
76 Correct 33 ms 21324 KB Output is correct
77 Correct 227 ms 31080 KB Output is correct
78 Correct 247 ms 34888 KB Output is correct
79 Correct 0 ms 212 KB Output is correct
80 Correct 0 ms 212 KB Output is correct