# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
682761 |
2023-01-17T01:21:36 Z |
NK_ |
Factories (JOI14_factories) |
C++17 |
|
5310 ms |
217756 KB |
// Success consists of going from failure to failure without loss of enthusiasm
#include <bits/stdc++.h>
#include "factories.h"
using namespace std;
#define nl '\n'
using ll = long long;
using E = array<int, 2>;
const int nax = 5e5+5;
vector<E> adj[nax];
bool vis[nax];
vector<ll> dst[nax];
int par[nax], siz[nax];
ll dx[nax];
const ll INFL = ll(1e18) + 10;
// START OF CENTROID DECOMPOSITION
int find_size(int u, int p = -1) {
if (vis[u]) return 0;
siz[u] = 1;
for(auto e : adj[u]) {
auto [v, w] = e;
if (v == p) continue;
siz[u] += find_size(v, u);
}
return siz[u];
}
int find_centroid(int u, int p, int n) {
for(auto e : adj[u]) {
auto [v, w] = e;
if (v == p) continue;
if (!vis[v] && siz[v] > n / 2) return find_centroid(v, u, n);
}
return u;
}
void dfs2(int u, int p = -1) {
for(auto e : adj[u]) {
auto [v, w] = e;
if (v == p || vis[v]) continue;
dst[v].push_back(dst[u].back() + w);
dfs2(v, u);
}
}
void init_centroid(int u = 0, int p = -1) {
find_size(u);
int c = find_centroid(u, -1, siz[u]);
dst[c].push_back(0);
dfs2(c);
vis[c] = 1;
par[c] = p;
for(auto e : adj[c]) {
auto [v, wv] = e;
if (vis[v]) continue;
init_centroid(v, c);
}
}
// END OF CENTROID DECOMPOSITION
void Init(int N, int A[], int B[], int D[]) {
for(int i = 0; i < N; i++) {
vis[i] = 0; par[i] = -1;
dx[i] = INFL;
adj[i] = {};
siz[i] = 0;
}
for(int i = 0; i < N-1; i++) {
adj[A[i]].push_back({B[i], D[i]});
adj[B[i]].push_back({A[i], D[i]});
}
init_centroid();
for(int i = 0; i < N; i++) reverse(begin(dst[i]), end(dst[i]));
}
ll Query(int S, int X[], int T, int Y[]) {
vector<int> alt;
for(int i = 0; i < S; i++) {
int u = X[i];
dx[u] = 0; alt.push_back(u);
int jump = 0;
while(par[u] != -1) {
u = par[u];
alt.push_back(u);
dx[u] = min(dx[u], dst[X[i]][++jump]);
}
}
ll ans = INFL;
for(int i = 0; i < T; i++) {
int u = Y[i];
int jump = 0;
while(u != -1) {
ans = min(ans, dx[u] + dst[Y[i]][jump++]);
u = par[u];
}
}
sort(begin(alt), end(alt)); alt.erase(unique(begin(alt), end(alt)), end(alt));
for(auto u : alt) dx[u] = INFL;
return ans;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
21 ms |
24148 KB |
Output is correct |
2 |
Correct |
556 ms |
32640 KB |
Output is correct |
3 |
Correct |
665 ms |
32920 KB |
Output is correct |
4 |
Correct |
693 ms |
33300 KB |
Output is correct |
5 |
Correct |
846 ms |
33264 KB |
Output is correct |
6 |
Correct |
248 ms |
32312 KB |
Output is correct |
7 |
Correct |
664 ms |
32904 KB |
Output is correct |
8 |
Correct |
695 ms |
32876 KB |
Output is correct |
9 |
Correct |
824 ms |
33256 KB |
Output is correct |
10 |
Correct |
273 ms |
32396 KB |
Output is correct |
11 |
Correct |
664 ms |
32940 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
15 ms |
23904 KB |
Output is correct |
2 |
Correct |
2267 ms |
130120 KB |
Output is correct |
3 |
Correct |
3284 ms |
165652 KB |
Output is correct |
4 |
Correct |
732 ms |
79960 KB |
Output is correct |
5 |
Correct |
4221 ms |
214228 KB |
Output is correct |
6 |
Correct |
3451 ms |
166648 KB |
Output is correct |
7 |
Correct |
1399 ms |
54364 KB |
Output is correct |
8 |
Correct |
395 ms |
44084 KB |
Output is correct |
9 |
Correct |
1570 ms |
62744 KB |
Output is correct |
10 |
Correct |
1368 ms |
55648 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
21 ms |
24148 KB |
Output is correct |
2 |
Correct |
556 ms |
32640 KB |
Output is correct |
3 |
Correct |
665 ms |
32920 KB |
Output is correct |
4 |
Correct |
693 ms |
33300 KB |
Output is correct |
5 |
Correct |
846 ms |
33264 KB |
Output is correct |
6 |
Correct |
248 ms |
32312 KB |
Output is correct |
7 |
Correct |
664 ms |
32904 KB |
Output is correct |
8 |
Correct |
695 ms |
32876 KB |
Output is correct |
9 |
Correct |
824 ms |
33256 KB |
Output is correct |
10 |
Correct |
273 ms |
32396 KB |
Output is correct |
11 |
Correct |
664 ms |
32940 KB |
Output is correct |
12 |
Correct |
15 ms |
23904 KB |
Output is correct |
13 |
Correct |
2267 ms |
130120 KB |
Output is correct |
14 |
Correct |
3284 ms |
165652 KB |
Output is correct |
15 |
Correct |
732 ms |
79960 KB |
Output is correct |
16 |
Correct |
4221 ms |
214228 KB |
Output is correct |
17 |
Correct |
3451 ms |
166648 KB |
Output is correct |
18 |
Correct |
1399 ms |
54364 KB |
Output is correct |
19 |
Correct |
395 ms |
44084 KB |
Output is correct |
20 |
Correct |
1570 ms |
62744 KB |
Output is correct |
21 |
Correct |
1368 ms |
55648 KB |
Output is correct |
22 |
Correct |
2780 ms |
134388 KB |
Output is correct |
23 |
Correct |
2947 ms |
140096 KB |
Output is correct |
24 |
Correct |
4295 ms |
174468 KB |
Output is correct |
25 |
Correct |
4345 ms |
176232 KB |
Output is correct |
26 |
Correct |
4222 ms |
168132 KB |
Output is correct |
27 |
Correct |
5310 ms |
217756 KB |
Output is correct |
28 |
Correct |
907 ms |
84784 KB |
Output is correct |
29 |
Correct |
4215 ms |
167472 KB |
Output is correct |
30 |
Correct |
4135 ms |
167124 KB |
Output is correct |
31 |
Correct |
4127 ms |
167480 KB |
Output is correct |
32 |
Correct |
1771 ms |
68108 KB |
Output is correct |
33 |
Correct |
381 ms |
44816 KB |
Output is correct |
34 |
Correct |
1010 ms |
50288 KB |
Output is correct |
35 |
Correct |
1042 ms |
50564 KB |
Output is correct |
36 |
Correct |
1444 ms |
53236 KB |
Output is correct |
37 |
Correct |
1477 ms |
53196 KB |
Output is correct |