답안 #676178

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
676178 2022-12-29T16:38:14 Z vovamr Paths (RMI21_paths) C++17
100 / 100
479 ms 54088 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define fi first
#define se second
#define ll long long
#define ld long double
#define all(x) 	(x).begin(), (x).end()
#define pb push_back
#define mpp make_pair
#define ve vector
using namespace std;
using namespace __gnu_pbds;
template<class T> using oset = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>;
const ll inf = 1e18; const int iinf = 1e9;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
template <typename T> inline bool chmin(T& a, T b) { return (a > b ? a = b, 1 : 0); }
template <typename T> inline bool chmax(T& a, T b) { return (a < b ? a = b, 1 : 0); }

const int N = 1e5 + 10;
const int lg = 17;

int n, k;
ve<pii> gr[N];

int up[N][lg];
ll d[N], act[N];

int mx[N], mxu[N];

struct Node {
	Node *l = nullptr;
	Node *r = nullptr;
	ll s = 0;
	int sz; ll k, p;
	Node(ll x) : k(x), s(x), sz(1) { p = rng() % inf; }
};
typedef Node* nd;
inline int sz(nd t) { return !t ? 0 : t->sz; }
inline ll s(nd t) { return !t ? 0 : t->s; }
inline void upd(nd t) {
	if (!t) return;
	t->sz = sz(t->l) + 1 + sz(t->r);
	t->s = s(t->l) + t->k + s(t->r);
}
inline nd mg(nd a, nd b) {
	if (!a || !b) return !a ? b : a;
	if (a->p > b->p) { a->r = mg(a->r, b); upd(a); return a; }
	else { b->l = mg(a, b->l); upd(b); return b; }
}
inline pair<nd,nd> sp(nd t, ll s) {
	if (!t) return {nullptr, nullptr};
	int q = sz(t->r);
	if (s > q) { auto tt = sp(t->l, s - q - 1); t->l = tt.se; upd(t); return {tt.fi, t}; }
	else { auto tt = sp(t->r, s); t->r = tt.fi; upd(t); return {t, tt.se}; }
}
inline pair<nd,nd> spk(nd t, ll x) {
	if (!t) return {nullptr, nullptr};
	if (t->k <= x) { auto tt = spk(t->r, x); t->r = tt.fi; upd(t); return {t, tt.se}; }
	else { auto tt = spk(t->l, x); t->l = tt.se; upd(t); return {tt.fi, t}; }
}
inline void ins(nd &t, ll x) {
	auto [t1, t2] = spk(t, x);
	t = mg(t1, mg(new Node(x), t2));
}
inline void del(nd &t, ll x) {
	auto [t1, t2] = spk(t, x - 1);
	int S = sz(t2);
	auto [t3, t4] = sp(t2, sz(t2) - 1);
	assert(sz(t3) == 1);
	assert(s(t3) == x);
	assert(sz(t4) == S - 1);
	t = mg(t1, t4);
}

nd rt = nullptr;

inline void add(const ll &x) {
	ins(rt, x);
}
inline void del(const ll &x) {
	del(rt, x);
}
inline ll get() {
	auto [t1, t2] = sp(rt, k);
	ll res = s(t2);
	rt = mg(t1, t2);
	return res;
}

inline void dfs(int v, int p) {
	if (v == p) d[v] = 0;

	up[v][0] = p;
	for (int i = 1; i < lg; ++i) up[v][i] = up[up[v][i - 1]][i - 1];

	mx[v] = v;
	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;
		d[to] = d[v] + w;
		dfs(to, v);
		if (d[mx[to]] >= d[mx[v]]) mx[v] = mx[to];
	}
}
inline void dfs1(int v, int p) {
	if (gr[v].size() == 1) {
		int u = v;
		for (int i = lg - 1; ~i; --i) {
			if (mx[up[u][i]] == v) {
				u = up[u][i];
			}
		}
		act[v] = d[v] - d[up[u][0]];
	}
	else act[v] = 0;

	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;
		dfs1(to, v);
	}
}

pair<pll,pll> dpd[N];

inline void dfs2(int v, int p) {
	dpd[v] = {{0, v}, {0, v}};
	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;
		dfs2(to, v);

		chmax(dpd[v].se, mpp(dpd[to].fi.fi + w, dpd[to].fi.se));
		if (dpd[v].se > dpd[v].fi) swap(dpd[v].fi, dpd[v].se);
	}
}

pll dpu[N];
inline void dfs3(int v, int p, int pw) {
	if (v == p) dpu[v] = (gr[v].size() == 1 ? mpp(0, v) : mpp(-iinf, -iinf));
	else {
		chmax(dpu[v], mpp(dpu[p].fi + pw, dpu[p].se));

		if (dpd[p].fi.fi == dpd[v].fi.fi + pw) {
			chmax(dpu[v], mpp(dpd[p].se.fi + pw, dpd[p].se.se));
		}
		else {
			chmax(dpu[v], mpp(dpd[p].fi.fi + pw, dpd[p].fi.se));
		}
	}

	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;
		dfs3(to, v, w);
	}
}
inline void trans() {
	for (int i = 0; i < n; ++i) {
		mxu[i] = dpu[i].se;
	}
}

ll answer[N];

inline void dfs_reroot(int v, int p) {
	answer[v] = get();

	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;

		del(act[mx[to]]);
		del(act[mxu[to]]);
		act[mx[to]] -= w;
		act[mxu[to]] += w;
		add(act[mx[to]]);
		add(act[mxu[to]]);

		dfs_reroot(to, v);

		del(act[mx[to]]);
		del(act[mxu[to]]);
		act[mxu[to]] -= w;
		act[mx[to]] += w;
		add(act[mx[to]]);
		add(act[mxu[to]]);
	}
}

inline void solve() {
	cin >> n >> k;
	for (int i = 1; i < n; ++i) {
		int v, u, c;
		cin >> v >> u >> c, --v, --u;
		gr[v].pb({u, c}), gr[u].pb({v, c});
	}

	int c = 0;
	for (int i = 0; i < n; ++i) {
		c += (gr[i].size() == 1);
	}
	chmin(k, c);

	int r = 0;

	dfs(r, r);
	dfs1(r, r);
	dfs2(r, r);
	dfs3(r, r, 0);
	trans();

/*
	for (int i = 0; i < n; ++i) {
		cout << "vertex: " << i + 1 << ":" << '\n';
		cout << "deepest: (" << dpd[i].fi.se + 1 << " = " << dpd[i].fi.fi << "), ";
		cout << "(" << dpd[i].se.se + 1 << " = " << dpd[i].se.fi << ")" << '\n';
		cout << "going up: (" << dpu[i].se + 1 << " = " << dpu[i].fi << ")" << '\n';
	}
*/

	for (int i = 0; i < n; ++i) {
		if (gr[i].size() == 1) {
			add(act[i]);
		}
	}

	dfs_reroot(r, r);

	for (int i = 0; i < n; ++i) cout << answer[i] << '\n';
}

signed main() {
	ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	int q = 1; // cin >> q;
	while (q--) solve();
	cerr << fixed << setprecision(3) << "Time execution: " << (double)clock() / CLOCKS_PER_SEC << endl;
}

Compilation message

Main.cpp: In constructor 'Node::Node(long long int)':
Main.cpp:37:13: warning: 'Node::k' will be initialized after [-Wreorder]
   37 |  int sz; ll k, p;
      |             ^
Main.cpp:36:5: warning:   'long long int Node::s' [-Wreorder]
   36 |  ll s = 0;
      |     ^
Main.cpp:38:2: warning:   when initialized here [-Wreorder]
   38 |  Node(ll x) : k(x), s(x), sz(1) { p = rng() % inf; }
      |  ^~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
3 Correct 2 ms 2772 KB Output is correct
4 Correct 3 ms 2808 KB Output is correct
5 Correct 2 ms 2772 KB Output is correct
6 Correct 2 ms 2772 KB Output is correct
7 Correct 2 ms 2772 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
3 Correct 2 ms 2772 KB Output is correct
4 Correct 3 ms 2808 KB Output is correct
5 Correct 2 ms 2772 KB Output is correct
6 Correct 2 ms 2772 KB Output is correct
7 Correct 2 ms 2772 KB Output is correct
8 Correct 4 ms 3208 KB Output is correct
9 Correct 3 ms 3156 KB Output is correct
10 Correct 4 ms 3156 KB Output is correct
11 Correct 4 ms 3156 KB Output is correct
12 Correct 4 ms 3156 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
3 Correct 2 ms 2772 KB Output is correct
4 Correct 3 ms 2808 KB Output is correct
5 Correct 2 ms 2772 KB Output is correct
6 Correct 2 ms 2772 KB Output is correct
7 Correct 2 ms 2772 KB Output is correct
8 Correct 4 ms 3208 KB Output is correct
9 Correct 3 ms 3156 KB Output is correct
10 Correct 4 ms 3156 KB Output is correct
11 Correct 4 ms 3156 KB Output is correct
12 Correct 4 ms 3156 KB Output is correct
13 Correct 6 ms 3668 KB Output is correct
14 Correct 5 ms 3668 KB Output is correct
15 Correct 6 ms 3588 KB Output is correct
16 Correct 6 ms 3668 KB Output is correct
17 Correct 6 ms 3668 KB Output is correct
18 Correct 6 ms 3368 KB Output is correct
19 Correct 6 ms 3668 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 420 ms 50848 KB Output is correct
2 Correct 400 ms 52580 KB Output is correct
3 Correct 311 ms 47960 KB Output is correct
4 Correct 437 ms 51056 KB Output is correct
5 Correct 431 ms 51944 KB Output is correct
6 Correct 424 ms 51088 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
3 Correct 2 ms 2772 KB Output is correct
4 Correct 3 ms 2808 KB Output is correct
5 Correct 2 ms 2772 KB Output is correct
6 Correct 2 ms 2772 KB Output is correct
7 Correct 2 ms 2772 KB Output is correct
8 Correct 4 ms 3208 KB Output is correct
9 Correct 3 ms 3156 KB Output is correct
10 Correct 4 ms 3156 KB Output is correct
11 Correct 4 ms 3156 KB Output is correct
12 Correct 4 ms 3156 KB Output is correct
13 Correct 6 ms 3668 KB Output is correct
14 Correct 5 ms 3668 KB Output is correct
15 Correct 6 ms 3588 KB Output is correct
16 Correct 6 ms 3668 KB Output is correct
17 Correct 6 ms 3668 KB Output is correct
18 Correct 6 ms 3368 KB Output is correct
19 Correct 6 ms 3668 KB Output is correct
20 Correct 420 ms 50848 KB Output is correct
21 Correct 400 ms 52580 KB Output is correct
22 Correct 311 ms 47960 KB Output is correct
23 Correct 437 ms 51056 KB Output is correct
24 Correct 431 ms 51944 KB Output is correct
25 Correct 424 ms 51088 KB Output is correct
26 Correct 464 ms 51228 KB Output is correct
27 Correct 389 ms 52364 KB Output is correct
28 Correct 419 ms 52728 KB Output is correct
29 Correct 309 ms 47980 KB Output is correct
30 Correct 429 ms 51184 KB Output is correct
31 Correct 445 ms 50816 KB Output is correct
32 Correct 444 ms 53356 KB Output is correct
33 Correct 479 ms 52648 KB Output is correct
34 Correct 262 ms 49100 KB Output is correct
35 Correct 414 ms 52752 KB Output is correct
36 Correct 333 ms 54088 KB Output is correct