답안 #676174

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
676174 2022-12-29T16:11:33 Z vovamr Paths (RMI21_paths) C++17
68 / 100
527 ms 55284 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define fi first
#define se second
#define ll long long
#define ld long double
#define all(x) 	(x).begin(), (x).end()
#define pb push_back
#define mpp make_pair
#define ve vector
using namespace std;
using namespace __gnu_pbds;
template<class T> using oset = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>;
const ll inf = 1e18; const int iinf = 1e9;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
template <typename T> inline bool chmin(T& a, T b) { return (a > b ? a = b, 1 : 0); }
template <typename T> inline bool chmax(T& a, T b) { return (a < b ? a = b, 1 : 0); }

const int N = 1e5 + 10;
const int lg = 17;

int n, k;
ve<pii> gr[N];

int up[N][lg];
ll d[N], act[N];

int mx[N], mxu[N];

struct Node {
	Node *l = nullptr;
	Node *r = nullptr;
	ll s = 0;
	int sz; ll k, p;
	Node(ll x) : k(x), s(x), sz(1) { p = rng() % inf; }
};
typedef Node* nd;
inline int sz(nd t) { return !t ? 0 : t->sz; }
inline ll s(nd t) { return !t ? 0 : t->s; }
inline void upd(nd t) {
	if (!t) return;
	t->sz = sz(t->l) + 1 + sz(t->r);
	t->s = s(t->l) + t->k + s(t->r);
}
inline nd mg(nd a, nd b) {
	if (!a || !b) return !a ? b : a;
	if (a->p > b->p) { a->r = mg(a->r, b); upd(a); return a; }
	else { b->l = mg(a, b->l); upd(b); return b; }
}
inline pair<nd,nd> sp(nd t, ll s) {
	if (!t) return {nullptr, nullptr};
	int q = sz(t->r);
	if (s > q) { auto tt = sp(t->l, s - q - 1); t->l = tt.se; upd(t); return {tt.fi, t}; }
	else { auto tt = sp(t->r, s); t->r = tt.fi; upd(t); return {t, tt.se}; }
}
inline pair<nd,nd> spk(nd t, ll x) {
	if (!t) return {nullptr, nullptr};
	if (t->k <= x) { auto tt = spk(t->r, x); t->r = tt.fi; upd(t); return {t, tt.se}; }
	else { auto tt = spk(t->l, x); t->l = tt.se; upd(t); return {tt.fi, t}; }
}
inline void ins(nd &t, ll x) {
	auto [t1, t2] = spk(t, x);
	t = mg(t1, mg(new Node(x), t2));
}
inline void del(nd &t, ll x) {
	auto [t1, t2] = spk(t, x - 1);
	auto [t3, t4] = sp(t2, sz(t2) - 1);
	t = mg(t1, t4);
}

nd rt = nullptr;

inline void add(const ll &x) {
	ins(rt, x);
}
inline void del(const ll &x) {
	del(rt, x);
}
inline ll get() {
	auto [t1, t2] = sp(rt, k);
	ll res = s(t2);
	rt = mg(t1, t2);
	return res;
}

inline void dfs(int v, int p) {
	if (v == p) d[v] = 0;

	up[v][0] = p;
	for (int i = 1; i < lg; ++i) up[v][i] = up[up[v][i - 1]][i - 1];

	mx[v] = v;
	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;
		d[to] = d[v] + w;
		dfs(to, v);
		if (d[mx[to]] > d[mx[v]]) mx[v] = mx[to];
	}
}
inline void dfs1(int v, int p) {
	if (gr[v].size() == 1) {
		int u = v;
		for (int i = lg - 1; ~i; --i) {
			if (mx[up[u][i]] == v) {
				u = up[u][i];
			}
		}
		act[v] = d[v] - d[up[u][0]];
	}
	else act[v] = 0;

	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;
		dfs1(to, v);
	}
}

pair<pll,pll> dpd[N];

inline void dfs2(int v, int p) {
	dpd[v] = {{-1, -1}, {-1, -1}};
	if (gr[v].size() == 1) dpd[v].fi = {0, v};

	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;
		dfs2(to, v);

		chmax(dpd[v].se, mpp(dpd[to].fi.fi + w, dpd[to].fi.se));
		if (dpd[v].se > dpd[v].fi) swap(dpd[v].fi, dpd[v].se);
	}
}

pll dpu[N];
inline void dfs3(int v, int p, int pw) {
	if (v == p) dpu[v] = {0, v};
	else {
		chmax(dpu[v], mpp(dpu[p].fi + pw, dpu[p].se));

		if (dpd[p].fi.fi == dpd[v].fi.fi + pw) {
			chmax(dpu[v], mpp(dpd[p].se.fi + pw, dpd[p].se.se));
		}
		else {
			chmax(dpu[v], mpp(dpd[p].fi.fi + pw, dpd[p].fi.se));
		}
	}

	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;
		dfs3(to, v, w);
	}
}
inline void trans() {
	for (int i = 0; i < n; ++i) {
		mxu[i] = dpu[i].se;
		mx[i] = dpd[i].fi.se;
	}
}

ll answer[N];

inline void dfs_reroot(int v, int p) {
	answer[v] = get();

	for (auto &[to, w] : gr[v]) {
		if (to == p) continue;

		del(act[mx[to]]);
		del(act[mxu[to]]);
		act[mx[to]] -= w;
		act[mxu[to]] += w;
		add(act[mx[to]]);
		add(act[mxu[to]]);

		dfs_reroot(to, v);

		del(act[mx[to]]);
		del(act[mxu[to]]);
		act[mxu[to]] -= w;
		act[mx[to]] += w;
		add(act[mx[to]]);
		add(act[mxu[to]]);
	}
}

inline void solve() {
	cin >> n >> k;
	for (int i = 1; i < n; ++i) {
		int v, u, c;
		cin >> v >> u >> c, --v, --u;
		gr[v].pb({u, c}), gr[u].pb({v, c});
	}

	int r = 0;
	for (int i = 0; i < n; ++i) {
		if (gr[i].size() > 1) r = i;
	}

	dfs(r, r);
	dfs1(r, r);
	dfs2(r, r);
	dfs3(r, r, 0);
	trans();

/*
	for (int i = 0; i < n; ++i) {
		cout << "vertex: " << i + 1 << ":" << '\n';
		cout << "deepest: (" << dpd[i].fi.se + 1 << " = " << dpd[i].fi.fi << "), ";
		cout << "(" << dpd[i].se.se + 1 << " = " << dpd[i].se.fi << ")" << '\n';
		cout << "going up: (" << dpu[i].se + 1 << " = " << dpu[i].fi << ")" << '\n';
	}
*/

	for (int i = 0; i < n; ++i) {
		add(act[i]);
	}
	dfs_reroot(r, r);

	for (int i = 0; i < n; ++i) cout << answer[i] << '\n';
}

signed main() {
	ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	int q = 1; // cin >> q;
	while (q--) solve();
	cerr << fixed << setprecision(3) << "Time execution: " << (double)clock() / CLOCKS_PER_SEC << endl;
}

Compilation message

Main.cpp: In constructor 'Node::Node(long long int)':
Main.cpp:37:13: warning: 'Node::k' will be initialized after [-Wreorder]
   37 |  int sz; ll k, p;
      |             ^
Main.cpp:36:5: warning:   'long long int Node::s' [-Wreorder]
   36 |  ll s = 0;
      |     ^
Main.cpp:38:2: warning:   when initialized here [-Wreorder]
   38 |  Node(ll x) : k(x), s(x), sz(1) { p = rng() % inf; }
      |  ^~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2676 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2676 KB Output is correct
3 Correct 2 ms 2804 KB Output is correct
4 Correct 2 ms 2772 KB Output is correct
5 Correct 2 ms 2804 KB Output is correct
6 Correct 2 ms 2772 KB Output is correct
7 Correct 2 ms 2772 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2676 KB Output is correct
3 Correct 2 ms 2804 KB Output is correct
4 Correct 2 ms 2772 KB Output is correct
5 Correct 2 ms 2804 KB Output is correct
6 Correct 2 ms 2772 KB Output is correct
7 Correct 2 ms 2772 KB Output is correct
8 Correct 7 ms 3204 KB Output is correct
9 Correct 4 ms 3200 KB Output is correct
10 Correct 4 ms 3156 KB Output is correct
11 Correct 4 ms 3200 KB Output is correct
12 Correct 5 ms 3200 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2676 KB Output is correct
3 Correct 2 ms 2804 KB Output is correct
4 Correct 2 ms 2772 KB Output is correct
5 Correct 2 ms 2804 KB Output is correct
6 Correct 2 ms 2772 KB Output is correct
7 Correct 2 ms 2772 KB Output is correct
8 Correct 7 ms 3204 KB Output is correct
9 Correct 4 ms 3200 KB Output is correct
10 Correct 4 ms 3156 KB Output is correct
11 Correct 4 ms 3200 KB Output is correct
12 Correct 5 ms 3200 KB Output is correct
13 Correct 7 ms 3732 KB Output is correct
14 Correct 8 ms 3796 KB Output is correct
15 Correct 7 ms 3668 KB Output is correct
16 Correct 9 ms 3796 KB Output is correct
17 Correct 7 ms 3668 KB Output is correct
18 Correct 5 ms 3424 KB Output is correct
19 Correct 7 ms 3668 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 479 ms 53380 KB Output is correct
2 Correct 462 ms 55264 KB Output is correct
3 Correct 355 ms 53060 KB Output is correct
4 Correct 487 ms 53300 KB Output is correct
5 Correct 527 ms 54344 KB Output is correct
6 Correct 494 ms 53292 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2676 KB Output is correct
3 Correct 2 ms 2804 KB Output is correct
4 Correct 2 ms 2772 KB Output is correct
5 Correct 2 ms 2804 KB Output is correct
6 Correct 2 ms 2772 KB Output is correct
7 Correct 2 ms 2772 KB Output is correct
8 Correct 7 ms 3204 KB Output is correct
9 Correct 4 ms 3200 KB Output is correct
10 Correct 4 ms 3156 KB Output is correct
11 Correct 4 ms 3200 KB Output is correct
12 Correct 5 ms 3200 KB Output is correct
13 Correct 7 ms 3732 KB Output is correct
14 Correct 8 ms 3796 KB Output is correct
15 Correct 7 ms 3668 KB Output is correct
16 Correct 9 ms 3796 KB Output is correct
17 Correct 7 ms 3668 KB Output is correct
18 Correct 5 ms 3424 KB Output is correct
19 Correct 7 ms 3668 KB Output is correct
20 Correct 479 ms 53380 KB Output is correct
21 Correct 462 ms 55264 KB Output is correct
22 Correct 355 ms 53060 KB Output is correct
23 Correct 487 ms 53300 KB Output is correct
24 Correct 527 ms 54344 KB Output is correct
25 Correct 494 ms 53292 KB Output is correct
26 Correct 471 ms 53756 KB Output is correct
27 Correct 459 ms 55168 KB Output is correct
28 Correct 464 ms 55284 KB Output is correct
29 Correct 364 ms 53188 KB Output is correct
30 Incorrect 480 ms 53740 KB Output isn't correct
31 Halted 0 ms 0 KB -