Submission #676037

# Submission time Handle Problem Language Result Execution time Memory
676037 2022-12-29T01:31:01 Z Hegdahl Werewolf (IOI18_werewolf) C++17
100 / 100
981 ms 163412 KB
#include "werewolf.h"

#include <bits/stdc++.h>
using namespace std;

template <class F>
struct yc {
  F f_;
  yc(F &&f) : f_(std::forward<F>(f)) {}

  decltype(auto) operator()(auto &&...args) {
    return f_(std::ref(*this), std::forward<decltype(args)>(args)...);
  }
};

struct krusk {
  vector<array<int, 18>> u;
  vector<int> l, r, lo, hi;
  vector<int> order, where;
  vector<int> lm, rm;

  krusk(int n, const vector<array<int, 2>> &e)
      : u(2 * n - 1),
        l(n - 1, -1),
        r(n - 1, -1),
        lo(2 * n - 1),
        hi(2 * n - 1),
        where(2 * n - 1, -1),
        lm(2 * n - 1, (int)1e9),
        rm(2 * n - 1, -(int)1e9) {
    vector<int> boss(n, -1), root(n);
    iota(root.begin(), root.end(), 0);
    iota(lo.begin(), lo.begin() + n, 0);
    iota(hi.begin(), hi.begin() + n, 0);
    int nxt = n;

    auto find = yc([&](auto find, int i) -> int {
      if (boss[i] < 0) return i;
      return boss[i] = find(boss[i]);
    });

    auto unite = [&](int i, int j) {
      i = find(i), j = find(j);
      if (i == j) return false;
      if (boss[i] > boss[j]) swap(i, j);
      boss[i] += boss[j];
      boss[j] = i;

      l[nxt - n] = root[i];
      r[nxt - n] = root[j];
      lo[nxt] = min(lo[root[i]], lo[root[j]]);
      hi[nxt] = max(hi[root[i]], hi[root[j]]);

      root[i] = nxt;
      root[j] = -1;

      ++nxt;
      return true;
    };

    for (auto [i, j] : e) unite(i, j);

    assert(nxt == 2 * n - 1);
    order.reserve(2 * n - 1);

    auto dfs = yc([&](auto dfs, int i, int p) -> void {
      u[i][0] = p;
      for (int lvl = 0; lvl + 1 < u[i].size(); ++lvl)
        u[i][lvl + 1] = u[u[i][lvl]][lvl];

      if (i >= n && l[i - n] >= 0) dfs(l[i - n], i);
      where[i] = (int)order.size();
      order.push_back(i);
      lm[i] = min(lm[i], where[i]);
      rm[i] = max(rm[i], where[i]);
      if (i >= n && r[i - n] >= 0) dfs(r[i - n], i);

      lm[p] = min(lm[p], lm[i]);
      rm[p] = max(rm[p], rm[i]);
    });

    dfs(nxt - 1, nxt - 1);
  }

  array<int, 2> qry(int i, int mn, int mx) {
    assert(mn <= lo[i] && hi[i] <= mx);

    for (int lvl = (int)u[i].size() - 1; lvl >= 0; --lvl) {
      int j = u[i][lvl];
      if (mn <= lo[j] && hi[j] <= mx) i = j;
    }

    return {lm[i], rm[i]};
  }
};

vector<int> check_validity(int n, vector<int> ei, vector<int> ej,
                           vector<int> starts, vector<int> targets,
                           vector<int> los, vector<int> his) {
  int m = (int)ei.size();
  assert((int)ej.size() == m);
  vector<array<int, 2>> e(m);
  for (int mm = 0; mm < m; ++mm) {
    auto &[i, j] = e[mm];
    i = ei[mm];
    j = ej[mm];
  }

  sort(e.begin(), e.end(), [&](auto e0, auto e1) {
    auto [i0, j0] = e0;
    auto [i1, j1] = e1;
    return max(i0, j0) < max(i1, j1);
  });

  auto lo_tree = krusk(n, e);

  sort(e.begin(), e.end(), [&](auto e0, auto e1) {
    auto [i0, j0] = e0;
    auto [i1, j1] = e1;
    return min(i0, j0) > min(i1, j1);
  });

  auto hi_tree = krusk(n, e);

  int q = (int)starts.size();
  assert(q == (int)targets.size());
  assert(q == (int)los.size());
  assert(q == (int)his.size());
  vector<int> ans(q);

  int offset = 1;
  while (offset < 2 * n - 1) offset *= 2;

  vector<basic_string<int>> st(2 * offset);

  for (int i = 0; i < n; ++i)
    st[offset + hi_tree.where[i]].push_back(lo_tree.where[i]);
  for (int I = offset - 1; I; --I)
    std::merge(st[2 * I].begin(), st[2 * I].end(), st[2 * I + 1].begin(),
               st[2 * I + 1].end(), back_inserter(st[I]));
  
  auto check = [&](const auto &v, int lo, int hi) {
    auto it0 = lower_bound(v.begin(), v.end(), lo);
    auto it1 = upper_bound(v.begin(), v.end(), hi);
    return it0 != it1;
  };

  auto qry = [&](int i, int j, int x, int y) {
    i += offset - 1;
    j += offset + 1;
    while (i + 1 < j) {
      if (i % 2 == 0 && check(st[i + 1], x, y)) return true;
      if (j % 2 == 1 && check(st[j - 1], x, y)) return true;
      i >>= 1, j >>= 1;
    }
    return false;
  };
  
  for (int qq = 0; qq < q; ++qq) {
    int s = starts[qq];
    int t = targets[qq];
    int lo = los[qq];
    int hi = his[qq];

    auto [sl, sr] = hi_tree.qry(s, lo, n - 1);
    auto [tl, tr] = lo_tree.qry(t, 0, hi);

    ans[qq] = qry(sl, sr, tl, tr);
  }

  return ans;
}

Compilation message

werewolf.cpp:11:29: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   11 |   decltype(auto) operator()(auto &&...args) {
      |                             ^~~~
werewolf.cpp: In instantiation of 'krusk::krusk(int, const std::vector<std::array<int, 2> >&)::<lambda(auto:25, int, int)> [with auto:25 = std::reference_wrapper<yc<krusk::krusk(int, const std::vector<std::array<int, 2> >&)::<lambda(auto:25, int, int)> > >]':
werewolf.cpp:12:14:   required from 'decltype(auto) yc<F>::operator()(auto:23&& ...) [with auto:23 = {int, int}; F = krusk::krusk(int, const std::vector<std::array<int, 2> >&)::<lambda(auto:25, int, int)>]'
werewolf.cpp:82:25:   required from here
werewolf.cpp:68:33: warning: comparison of integer expressions of different signedness: 'int' and 'std::array<int, 18>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   68 |       for (int lvl = 0; lvl + 1 < u[i].size(); ++lvl)
      |                         ~~~~~~~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 8 ms 2516 KB Output is correct
11 Correct 8 ms 2516 KB Output is correct
12 Correct 7 ms 2388 KB Output is correct
13 Correct 7 ms 2644 KB Output is correct
14 Correct 6 ms 2644 KB Output is correct
15 Correct 8 ms 2576 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 723 ms 152868 KB Output is correct
2 Correct 780 ms 157544 KB Output is correct
3 Correct 601 ms 154444 KB Output is correct
4 Correct 594 ms 153080 KB Output is correct
5 Correct 621 ms 153104 KB Output is correct
6 Correct 729 ms 152956 KB Output is correct
7 Correct 808 ms 152868 KB Output is correct
8 Correct 760 ms 157632 KB Output is correct
9 Correct 549 ms 154440 KB Output is correct
10 Correct 491 ms 153084 KB Output is correct
11 Correct 537 ms 153088 KB Output is correct
12 Correct 520 ms 153044 KB Output is correct
13 Correct 853 ms 157632 KB Output is correct
14 Correct 856 ms 157640 KB Output is correct
15 Correct 834 ms 157656 KB Output is correct
16 Correct 827 ms 157644 KB Output is correct
17 Correct 666 ms 152980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 8 ms 2516 KB Output is correct
11 Correct 8 ms 2516 KB Output is correct
12 Correct 7 ms 2388 KB Output is correct
13 Correct 7 ms 2644 KB Output is correct
14 Correct 6 ms 2644 KB Output is correct
15 Correct 8 ms 2576 KB Output is correct
16 Correct 723 ms 152868 KB Output is correct
17 Correct 780 ms 157544 KB Output is correct
18 Correct 601 ms 154444 KB Output is correct
19 Correct 594 ms 153080 KB Output is correct
20 Correct 621 ms 153104 KB Output is correct
21 Correct 729 ms 152956 KB Output is correct
22 Correct 808 ms 152868 KB Output is correct
23 Correct 760 ms 157632 KB Output is correct
24 Correct 549 ms 154440 KB Output is correct
25 Correct 491 ms 153084 KB Output is correct
26 Correct 537 ms 153088 KB Output is correct
27 Correct 520 ms 153044 KB Output is correct
28 Correct 853 ms 157632 KB Output is correct
29 Correct 856 ms 157640 KB Output is correct
30 Correct 834 ms 157656 KB Output is correct
31 Correct 827 ms 157644 KB Output is correct
32 Correct 666 ms 152980 KB Output is correct
33 Correct 865 ms 154144 KB Output is correct
34 Correct 285 ms 29360 KB Output is correct
35 Correct 874 ms 157496 KB Output is correct
36 Correct 798 ms 153716 KB Output is correct
37 Correct 886 ms 156640 KB Output is correct
38 Correct 825 ms 154452 KB Output is correct
39 Correct 658 ms 162296 KB Output is correct
40 Correct 899 ms 163032 KB Output is correct
41 Correct 719 ms 155792 KB Output is correct
42 Correct 577 ms 153732 KB Output is correct
43 Correct 814 ms 161944 KB Output is correct
44 Correct 856 ms 156592 KB Output is correct
45 Correct 596 ms 162672 KB Output is correct
46 Correct 629 ms 162460 KB Output is correct
47 Correct 848 ms 157768 KB Output is correct
48 Correct 916 ms 157584 KB Output is correct
49 Correct 981 ms 157772 KB Output is correct
50 Correct 860 ms 157504 KB Output is correct
51 Correct 772 ms 163244 KB Output is correct
52 Correct 766 ms 163412 KB Output is correct