답안 #675953

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
675953 2022-12-28T15:05:16 Z browntoad Love Polygon (BOI18_polygon) C++14
100 / 100
146 ms 27740 KB
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast", "unroll-loops")
using namespace std;
#define ll long long
#define int ll
#define FOR(i,a, b) for (int i=(a); i<(b); i++)
#define REP(i, n) FOR(i, 0, n)
#define REP1(i, n) FOR(i, 1, n+1)
#define pii pair<int, int>
#define SZ(x) (int)((x).size())
#define ALL(x) (x).begin(), (x).end()
#define f first
#define s second
#define pb push_back
#define endl '\n'

const ll maxn = 1e5+5;
const ll inf = (1ll<<60);
vector<int> graph(maxn);
vector<int> rgraph[maxn];
vector<bool> occ(maxn);
int dpt[maxn][2];
int dpc[maxn][3];
vector<bool> incyc(maxn);
vector<int> siz(maxn);
vector<int> cycs;
void dfs(int x){
    if (incyc[graph[x]]) {
        incyc[x]=1;
        return;
    }
    if (occ[graph[x]]==0) {
        occ[graph[x]]=1;
        dfs(graph[x]);
        incyc[x]=1;
    }
    else {
        cycs.pb(x);
        incyc[x]=1;
    }
}
void dfs2(int x){
    int mn=0;
    REP(i, SZ(rgraph[x])){
        if (incyc[rgraph[x][i]]) continue;
        dfs2(rgraph[x][i]);
        dpt[x][0]+=dpt[rgraph[x][i]][1];
        dpt[x][1]+=dpt[rgraph[x][i]][1];
        mn=min(mn, dpt[rgraph[x][i]][0]-dpt[rgraph[x][i]][1]);
    }
    dpt[x][1]+=mn+1;
}
signed main(){
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n; cin>>n;
    vector<string> pos(n);
    vector<pair<string, string> > Graph(n);
    REP(i, n){
        cin>>Graph[i].f>>Graph[i].s;
        pos[i]=Graph[i].f;
    }
    sort(ALL(pos));
    REP(i, n){
        int a=upper_bound(ALL(pos), Graph[i].f)-pos.begin();
        int b=upper_bound(ALL(pos), Graph[i].s)-pos.begin();
        graph[a]=b;
        rgraph[b].pb(a);
    }
    REP1(i, n){
        if (!occ[i]){
            occ[i]=1;
            dfs(i);
        }
    }

    int ans=0;
    fill(ALL(incyc), false);
    REP(i, SZ(cycs)){
        int cur = cycs[i];
        //cout<<cur<<endl;
        vector<pii> tmp;

        incyc[cur]=1;
        cur=graph[cur];
        while(cur!=cycs[i]){
            incyc[cur]=1;
            cur=graph[cur];
        }

        dfs2(cur);
        tmp.pb({dpt[cur][0], dpt[cur][1]});
        cur=graph[cur];
        while(cur!=cycs[i]){
            dfs2(cur);
            tmp.pb({dpt[cur][0], dpt[cur][1]});
            cur=graph[cur];
        }
        if (SZ(tmp)==1){
            ans+=tmp[0].s;
        }
        else if (SZ(tmp)==2){
            ans+=min(tmp[0].f+tmp[1].f, tmp[0].s+tmp[1].s);
        }
        else {
            int cans = inf;
            // first is 0
            dpc[0][0]=tmp[0].f;
            dpc[0][1]=dpc[0][2]=inf;
            REP1(j, SZ(tmp)-1){
                dpc[j][0]=min(inf, min(dpc[j-1][1], dpc[j-1][2])+tmp[j].f);
                dpc[j][1]=min(inf, min(dpc[j-1][1], dpc[j-1][2])+tmp[j].s);
                dpc[j][2]=min(inf, dpc[j-1][0]+tmp[j].f+1);
            }
            cans=min({cans, dpc[SZ(tmp)-1][1], dpc[SZ(tmp)-1][2]});
            // second is 1
            dpc[0][1]=tmp[0].s;
            dpc[0][0]=dpc[0][2]=inf;
            REP1(j, SZ(tmp)-1){
                dpc[j][0]=min(inf, min(dpc[j-1][1], dpc[j-1][2])+tmp[j].f);
                dpc[j][1]=min(inf, min(dpc[j-1][1], dpc[j-1][2])+tmp[j].s);
                dpc[j][2]=min(inf, dpc[j-1][0]+tmp[j].f+1);
            }
            cans=min({cans, dpc[SZ(tmp)-1][1], dpc[SZ(tmp)-1][2]});
            // third is 2
            dpc[0][2]=tmp[0].f+1;
            dpc[0][0]=dpc[0][1]=inf;
            REP1(j, SZ(tmp)-1){
                dpc[j][0]=min(inf, min(dpc[j-1][1], dpc[j-1][2])+tmp[j].f);
                dpc[j][1]=min(inf, min(dpc[j-1][1], dpc[j-1][2])+tmp[j].s);
                dpc[j][2]=min(inf, dpc[j-1][0]+tmp[j].f+1);
            }
            cans=min(cans, dpc[SZ(tmp)-1][0]);

            ans+=cans;
        }
    }

    if (n%2==1) ans=-1;
    cout<<ans<<endl;
}

# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 4180 KB Output is correct
2 Correct 2 ms 4196 KB Output is correct
3 Correct 3 ms 4180 KB Output is correct
4 Correct 2 ms 4180 KB Output is correct
5 Correct 2 ms 4284 KB Output is correct
6 Correct 3 ms 4180 KB Output is correct
7 Correct 2 ms 4180 KB Output is correct
8 Correct 2 ms 4180 KB Output is correct
9 Correct 3 ms 4280 KB Output is correct
10 Correct 2 ms 4180 KB Output is correct
11 Correct 2 ms 4180 KB Output is correct
12 Correct 2 ms 4180 KB Output is correct
13 Correct 2 ms 4180 KB Output is correct
14 Correct 2 ms 4284 KB Output is correct
15 Correct 2 ms 4180 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4180 KB Output is correct
2 Correct 2 ms 4180 KB Output is correct
3 Correct 2 ms 4180 KB Output is correct
4 Correct 122 ms 26696 KB Output is correct
5 Correct 130 ms 20760 KB Output is correct
6 Correct 144 ms 27592 KB Output is correct
7 Correct 126 ms 24648 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 146 ms 19812 KB Output is correct
2 Correct 127 ms 21700 KB Output is correct
3 Correct 142 ms 21308 KB Output is correct
4 Correct 128 ms 19292 KB Output is correct
5 Correct 136 ms 27740 KB Output is correct
6 Correct 120 ms 19156 KB Output is correct
7 Correct 120 ms 19284 KB Output is correct
8 Correct 125 ms 19920 KB Output is correct
9 Correct 110 ms 18900 KB Output is correct
10 Correct 100 ms 18404 KB Output is correct
11 Correct 3 ms 4180 KB Output is correct
12 Correct 3 ms 4280 KB Output is correct
13 Correct 2 ms 4180 KB Output is correct
14 Correct 3 ms 4180 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 4180 KB Output is correct
2 Correct 2 ms 4196 KB Output is correct
3 Correct 3 ms 4180 KB Output is correct
4 Correct 2 ms 4180 KB Output is correct
5 Correct 2 ms 4284 KB Output is correct
6 Correct 3 ms 4180 KB Output is correct
7 Correct 2 ms 4180 KB Output is correct
8 Correct 2 ms 4180 KB Output is correct
9 Correct 3 ms 4280 KB Output is correct
10 Correct 2 ms 4180 KB Output is correct
11 Correct 2 ms 4180 KB Output is correct
12 Correct 2 ms 4180 KB Output is correct
13 Correct 2 ms 4180 KB Output is correct
14 Correct 2 ms 4284 KB Output is correct
15 Correct 2 ms 4180 KB Output is correct
16 Correct 3 ms 4180 KB Output is correct
17 Correct 2 ms 4180 KB Output is correct
18 Correct 2 ms 4180 KB Output is correct
19 Correct 122 ms 26696 KB Output is correct
20 Correct 130 ms 20760 KB Output is correct
21 Correct 144 ms 27592 KB Output is correct
22 Correct 126 ms 24648 KB Output is correct
23 Correct 146 ms 19812 KB Output is correct
24 Correct 127 ms 21700 KB Output is correct
25 Correct 142 ms 21308 KB Output is correct
26 Correct 128 ms 19292 KB Output is correct
27 Correct 136 ms 27740 KB Output is correct
28 Correct 120 ms 19156 KB Output is correct
29 Correct 120 ms 19284 KB Output is correct
30 Correct 125 ms 19920 KB Output is correct
31 Correct 110 ms 18900 KB Output is correct
32 Correct 100 ms 18404 KB Output is correct
33 Correct 3 ms 4180 KB Output is correct
34 Correct 3 ms 4280 KB Output is correct
35 Correct 2 ms 4180 KB Output is correct
36 Correct 3 ms 4180 KB Output is correct
37 Correct 132 ms 20316 KB Output is correct
38 Correct 132 ms 20756 KB Output is correct
39 Correct 125 ms 19412 KB Output is correct
40 Correct 112 ms 19168 KB Output is correct
41 Correct 132 ms 19144 KB Output is correct
42 Correct 129 ms 19408 KB Output is correct
43 Correct 116 ms 19552 KB Output is correct
44 Correct 115 ms 19532 KB Output is correct
45 Correct 119 ms 19508 KB Output is correct
46 Correct 130 ms 19540 KB Output is correct
47 Correct 106 ms 18912 KB Output is correct
48 Correct 139 ms 19728 KB Output is correct
49 Correct 127 ms 21644 KB Output is correct
50 Correct 112 ms 21320 KB Output is correct
51 Correct 117 ms 19208 KB Output is correct
52 Correct 131 ms 27724 KB Output is correct
53 Correct 121 ms 19156 KB Output is correct
54 Correct 124 ms 19284 KB Output is correct
55 Correct 115 ms 19928 KB Output is correct
56 Correct 103 ms 19004 KB Output is correct
57 Correct 98 ms 18248 KB Output is correct
58 Correct 2 ms 4180 KB Output is correct
59 Correct 2 ms 4280 KB Output is correct
60 Correct 2 ms 4284 KB Output is correct
61 Correct 2 ms 4180 KB Output is correct
62 Correct 2 ms 4284 KB Output is correct
63 Correct 2 ms 4180 KB Output is correct
64 Correct 2 ms 4180 KB Output is correct
65 Correct 120 ms 26700 KB Output is correct
66 Correct 134 ms 20800 KB Output is correct
67 Correct 118 ms 27588 KB Output is correct
68 Correct 119 ms 24600 KB Output is correct
69 Correct 2 ms 4180 KB Output is correct
70 Correct 2 ms 4180 KB Output is correct
71 Correct 2 ms 4180 KB Output is correct
72 Correct 2 ms 4260 KB Output is correct
73 Correct 2 ms 4284 KB Output is correct
74 Correct 4 ms 4180 KB Output is correct
75 Correct 3 ms 4284 KB Output is correct
76 Correct 3 ms 4284 KB Output is correct
77 Correct 3 ms 4180 KB Output is correct
78 Correct 2 ms 4280 KB Output is correct
79 Correct 3 ms 4180 KB Output is correct
80 Correct 2 ms 4284 KB Output is correct
81 Correct 3 ms 4180 KB Output is correct
82 Correct 2 ms 4188 KB Output is correct
83 Correct 2 ms 4280 KB Output is correct