Submission #671365

# Submission time Handle Problem Language Result Execution time Memory
671365 2022-12-13T01:18:29 Z havingfun854 Mobile (BOI12_mobile) C++11
75 / 100
1000 ms 44104 KB
// https://oj.uz/problem/view/BOI12_mobile
#include <bits/stdc++.h>
using namespace std;

#define forint(i, from, toinc) for (int i = from; i <= toinc; ++i)
#define sq(x) (x)*(x)
#define all(x) x.begin(), x.end()

void fio()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
#ifdef USEFILE
    freopen("mobile.in", "r", stdin);
    freopen("mobile.out", "w", stdout);
#endif
}

/*
    some observations:

    if we have 2 towers with the same x, (x, y1) and (x, y2),
    we only need to keep the one with the smallest abs y value,
    let's say |y1| <= |y2|, then we can safely forget (x, y2), because for any
    point on the x axis, it will always be closer (<=) to (x, y1) than to (x, y2).

    we do a simple binary search on distance d to see if all points between [0,L]
    can be covered by d.
 */

struct Point {
    int x,y;
};
struct Range {
    double from, to;
    bool operator<(const Range &o) const {
        return from == o.from ? to > o.to : from < o.from;
        // same from rank the one with the larger to first
    }
};

int tcnt;                   // tower count
vector<Point> towers;
int len;                    // all points on (0,0) to (len,0) to the towers
vector<Range> ranges;
int rcnt;

void debug()
{
    cerr << "highway from (0,0) to (" << len << ",0)" << endl;

    cerr << tcnt << " towers:";
    forint(i, 0, tcnt-1) {
        cerr << " " << towers[i].x << "," << towers[i].y;
    }
    cerr << endl;

    cerr << rcnt << " ranges:";
    forint(i, 0, rcnt-1) {
        cerr << " [" << ranges[i].from << "," << ranges[i].to << "]";
    }
    cerr << endl;
}

void rdata()
{
    cin >> tcnt >> len;

    int lastx, lasty;       // lasty >= 0
    cin >> lastx >> lasty;
    lasty = abs(lasty);

    forint(i, 1, tcnt-1) {
        int x, y;
        cin >> x >> y;
        if (x != lastx) {
            towers.push_back({lastx, lasty});
            lastx = x;
            lasty = abs(y);
        } else if (abs(y) < abs(lasty)) {
            lasty = abs(y);
        }
        if (i == tcnt-1) {
            towers.push_back({lastx, lasty});
        }
    }

    tcnt = (int)towers.size();
}


bool can_cover(double d)
{
    ranges.clear();

    forint(i, 0, tcnt-1) {
        double x = towers[i].x;
        double y = towers[i].y;
        if (d > y) {
            double dx = sqrt(sq(d) - sq(y));
            if (x-dx > len || x+dx < 0) continue;
            ranges.push_back({x-dx, x+dx});
        }
    }
    rcnt = (int)ranges.size();

    sort(all(ranges));

#ifdef DEBUG
    debug();
#endif

    double right = 0;
    forint(i, 0, rcnt-1) {
        if (ranges[i].from <= right) {
            right = max(ranges[i].to, right);
        } else {
            break;
        }
    }

    bool res = right >= len;
#ifdef DEBUG
    cerr << "d=" << d << " can" << (res ? "" : "not") << " cover all" << endl;
#endif
    return res;
}

int main()
{
    fio();
    rdata();
#ifdef DEBUG
    debug();
#endif

    double dends2 = sq(towers[0].x + len) + sq(towers[0].y);
    dends2 = max(dends2, sq(1.0 * towers[tcnt-1].x) + sq(towers[tcnt-1].y));
    double dmax = sqrt(dends2);

    double d = dmax+1;
    for (double step = dmax; step > 1e-4; step /= 2) {
        while (d >= 0 && can_cover(d-step)) {
            d -= step;
        }
    }
    cout << fixed << setprecision(3) << d << '\n';

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 4 ms 340 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 3 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 340 KB Output is correct
2 Correct 11 ms 468 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 11 ms 468 KB Output is correct
3 Correct 2 ms 212 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 468 KB Output is correct
2 Correct 11 ms 468 KB Output is correct
3 Correct 2 ms 340 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 62 ms 2412 KB Output is correct
2 Correct 170 ms 1824 KB Output is correct
3 Correct 142 ms 1880 KB Output is correct
4 Correct 26 ms 2384 KB Output is correct
5 Correct 6 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 468 KB Output is correct
2 Correct 17 ms 1364 KB Output is correct
3 Correct 25 ms 2360 KB Output is correct
4 Correct 27 ms 2472 KB Output is correct
5 Correct 30 ms 2512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 175 ms 3188 KB Output is correct
2 Correct 162 ms 1880 KB Output is correct
3 Correct 379 ms 2332 KB Output is correct
4 Correct 36 ms 2640 KB Output is correct
5 Correct 18 ms 828 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 120 ms 1836 KB Output is correct
2 Correct 129 ms 1752 KB Output is correct
3 Correct 61 ms 724 KB Output is correct
4 Correct 36 ms 2640 KB Output is correct
5 Correct 29 ms 2512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 135 ms 3284 KB Output is correct
2 Correct 130 ms 1712 KB Output is correct
3 Correct 59 ms 724 KB Output is correct
4 Correct 36 ms 2604 KB Output is correct
5 Correct 30 ms 2476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 823 ms 12572 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 98 ms 684 KB Output is correct
2 Correct 502 ms 12508 KB Output is correct
3 Correct 502 ms 3224 KB Output is correct
4 Correct 179 ms 12476 KB Output is correct
5 Correct 165 ms 12152 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 987 ms 21560 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 114 ms 528 KB Output is correct
2 Correct 572 ms 21532 KB Output is correct
3 Correct 407 ms 2248 KB Output is correct
4 Correct 235 ms 17252 KB Output is correct
5 Correct 187 ms 16732 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1088 ms 22368 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 128 ms 492 KB Output is correct
2 Correct 669 ms 22348 KB Output is correct
3 Correct 786 ms 11820 KB Output is correct
4 Correct 259 ms 31376 KB Output is correct
5 Correct 221 ms 27364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1078 ms 23152 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 141 ms 460 KB Output is correct
2 Correct 754 ms 23056 KB Output is correct
3 Correct 743 ms 12900 KB Output is correct
4 Correct 352 ms 34300 KB Output is correct
5 Correct 252 ms 29436 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1078 ms 24716 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 174 ms 480 KB Output is correct
2 Correct 862 ms 24536 KB Output is correct
3 Correct 947 ms 16832 KB Output is correct
4 Correct 380 ms 44104 KB Output is correct
5 Correct 321 ms 38252 KB Output is correct