Submission #66875

# Submission time Handle Problem Language Result Execution time Memory
66875 2018-08-12T17:12:09 Z Benq Sailing Race (CEOI12_race) C++14
75 / 100
3000 ms 4884 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
 
using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
 
bool ok[501][501];
int N,k;
 
int nor(int x) { 
	if (x <= 0) x += N;
	if (x > N) x -= N;
	return x;
}

template<class T> void MX(T& a, T b) { a = max(a,b); }

int alt[2][501][501];

pi solve0() {
    FOR(len,2,N) FOR(i,1,N+1) {
        int en = nor(i+len);
        FOR(j,1,len) {
            int m = nor(i+j);
            int ex = max(alt[0][m][en],alt[1][i][m])+1;
            if (ok[i][m]) MX(alt[0][i][en],ex);
            if (ok[en][m]) MX(alt[1][i][en],ex);
        }
    }
    
    pi ret = {0,0};
    FOR(i,1,N+1) FOR(j,1,N+1) if (ok[i][j]) 
        MX(ret,{max(alt[1][i][j],alt[0][j][i])+1,i});
    return ret;
}

int no[2][501][501];

pi ret = {0,0};
    
void test1(int len, int i) {
    pi yes = {-MOD,-MOD};
    int en = nor(i+len);
    int existsEdge = 0;
    for (int j = len-1; j >= 0; --j) {
        int m = nor(i+j);
        if (ok[m][en]) {
            MX(no[0][i][en],no[0][i][m]+1);
            if (existsEdge) MX(yes,{no[0][i][en],existsEdge});
        }
        if (ok[m][i]) existsEdge = m;
    }
    MX(ret,{yes.f+alt[0][en][i]+1,yes.s});
}

void test2(int len, int i) {
    int en = nor(i+len);
    no[0][i][en] = -MOD;
    for (int j = 0; j < len; ++j) {
        int m = nor(i+j);
        if (j && ok[m][i]) MX(ret,{no[0][i][en]+alt[1][m][en]+1,m});
        if (ok[m][en]) MX(no[0][i][en],no[0][i][m]+1);
    }
}

void test3(int len, int i) {
    pi yes = {-MOD,-MOD};
    int st = nor(i-len);
    int existsEdge = 0;
    for (int j = len-1; j >= 0; --j) {
        int m = nor(i-j);
        if (ok[m][st]) {
            MX(no[1][st][i],no[1][m][i]+1);
            if (existsEdge) MX(yes,{no[1][st][i],existsEdge});
        }
        if (ok[m][i]) existsEdge = m;
    }
    MX(ret,{yes.f+alt[1][i][st]+1,yes.s});
}

void test4(int len, int i) {
    int st = nor(i-len);
    no[1][st][i] = -MOD;
    for (int j = 0; j < len; ++j) {
        int m = nor(i-j);
        if (j && ok[m][i]) MX(ret,{no[1][st][i]+alt[0][st][m]+1,m});
        if (ok[m][st]) MX(no[1][st][i],no[1][m][i]+1);
    }
}

pi solve1() {
    F0R(i,2) FOR(j,1,N+1) FOR(k,1,N+1) {
        if (j != k) no[i][j][k] = -MOD;
        else no[i][j][k] = 0;
    }
    
    FOR(len,1,N) FOR(i,1,N+1) {
        test1(len,i);
        test2(len,i);
        test3(len,i);
        test4(len,i);
    }
    
    return ret;
}
 
int main() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> k;
    // FOR(i,1,N+1) FOR(j,1,N+1) if (i != j) ok[i][j] = rand() % 2;
    FOR(i,1,N+1) {
        int x; 
        while (cin >> x) {
            if (x == 0) break;
            ok[i][x] = 1;
        }
    }
    pi t = solve0();
    if (k == 1) MX(t,solve1());
    cout << t.f << "\n" << t.s;
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# Verdict Execution time Memory Grader output
1 Correct 3 ms 380 KB Output is correct
2 Correct 2 ms 484 KB Output is correct
3 Correct 4 ms 664 KB Output is correct
4 Correct 4 ms 852 KB Output is correct
5 Correct 3 ms 852 KB Output is correct
6 Correct 7 ms 1104 KB Output is correct
7 Correct 5 ms 1104 KB Output is correct
8 Correct 11 ms 1260 KB Output is correct
9 Correct 7 ms 1260 KB Output is correct
10 Correct 7 ms 1260 KB Output is correct
11 Correct 12 ms 1260 KB Output is correct
12 Correct 158 ms 2328 KB Output is correct
13 Correct 465 ms 3148 KB Output is correct
14 Correct 171 ms 3148 KB Output is correct
15 Incorrect 2981 ms 4884 KB Output isn't correct
16 Execution timed out 3044 ms 4884 KB Time limit exceeded
17 Execution timed out 3059 ms 4884 KB Time limit exceeded
18 Correct 336 ms 4884 KB Output is correct
19 Execution timed out 3046 ms 4884 KB Time limit exceeded
20 Execution timed out 3043 ms 4884 KB Time limit exceeded