Submission #658463

# Submission time Handle Problem Language Result Execution time Memory
658463 2022-11-13T09:28:08 Z MilosMilutinovic Fishing Game (RMI19_fishing) C++14
50 / 100
2000 ms 218692 KB
/**
 *    author:  wxhtzdy
 *    created: 13.11.2022 09:25:04
**/
#include <bits/stdc++.h>

using namespace std;

template <typename T>
T inverse(T a, T m) {
  T u = 0, v = 1;
  while (a != 0) {
    T t = m / a;
    m -= t * a; swap(a, m);
    u -= t * v; swap(u, v);
  }
  assert(m == 1);
  return u;
}
template <typename T>
class Modular {
 public:
  using Type = typename decay<decltype(T::value)>::type;
  constexpr Modular() : value() {}
  template <typename U>
  Modular(const U& x) {
    value = normalize(x);
  }
  template <typename U>
  static Type normalize(const U& x) {
    Type v;
    if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
    else v = static_cast<Type>(x % mod());
    if (v < 0) v += mod();
    return v;
  }
  const Type& operator()() const { return value; }
  template <typename U>
  explicit operator U() const { return static_cast<U>(value); }
  constexpr static Type mod() { return T::value; }
  Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
  Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
  template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
  template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
  Modular& operator++() { return *this += 1; }
  Modular& operator--() { return *this -= 1; }
  Modular operator++(int) { Modular result(*this); *this += 1; return result; }
  Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
  Modular operator-() const { return Modular(-value); }
  template <typename U = T>
  typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
    uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
    uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
    asm(
      "divl %4; \n\t"
      : "=a" (d), "=d" (m)
      : "d" (xh), "a" (xl), "r" (mod())
    );
    value = m;
#else
    value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
    return *this;
  }
  template <typename U = T>
  typename enable_if<is_same<typename Modular<U>::Type, int64_t>::value, Modular>::type& operator*=(const Modular& rhs) {
    int64_t q = static_cast<int64_t>(static_cast<long double>(value) * rhs.value / mod());
    value = normalize(value * rhs.value - q * mod());
    return *this;
  }
  template <typename U = T>
  typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
    value = normalize(value * rhs.value);
    return *this;
  }
  Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
  template <typename U>
  friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);
  template <typename U>
  friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);
  template <typename U>
  friend std::istream& operator>>(std::istream& stream, Modular<U>& number);
 private:
  Type value;
};
template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }
template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }
template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
  assert(b >= 0);
  Modular<T> x = a, res = 1;
  U p = b;
  while (p > 0) {
    if (p & 1) res *= x;
    x *= x;
    p >>= 1;
  }
  return res;
}
template <typename T>
string to_string(const Modular<T>& number) {
  return to_string(number());
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Modular<T>& number) {
  return stream << number();
}
template <typename T>
std::istream& operator>>(std::istream& stream, Modular<T>& number) {
  typename common_type<typename Modular<T>::Type, int64_t>::type x;
  stream >> x;
  number.value = Modular<T>::normalize(x);
  return stream;
}
/*
using ModType = int;
struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/
constexpr int md = 1e9 + 7;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;

vector<Mint> fact(1, 1);
vector<Mint> inv_fact(1, 1);
 
Mint C(int n, int k) {
  if (k < 0 || k > n) {
    return 0;
  }
  while ((int) fact.size() < n + 1) {
    fact.push_back(fact.back() * (int) fact.size());
    inv_fact.push_back(1 / fact.back());
  }
  return fact[n] * inv_fact[k] * inv_fact[n - k];
}

const int N = 100;

Mint dp[3 * N][3 * N][3 * N];
Mint new_dp[4][2][3 * N][3 * N][3 * N];
bool vis[3 * N][3 * N][3 * N];

int main() {
  ios::sync_with_stdio(false);
  cin.tie(0);  
  int n, tt;
  cin >> n >> tt;
  while (tt--) {
    vector<vector<int>> pp(3 * n);
    for (int i = 0; i < 2 * n; i++) {
      int x;
      cin >> x;
      --x;
      pp[x].push_back(0);  
    }
    for (int i = 0; i < 2 * n; i++) {
      int x;
      cin >> x;
      --x;
      pp[x].push_back(1);  
    }
    for (int i = 0; i < 2 * n; i++) {
      int x;
      cin >> x;
      --x;
      pp[x].push_back(2);  
    }
    int f0 = 0, f1 = 0, f2 = 0;  
    for (int i = 0; i < 3 * n; i++) {
      if (pp[i][0] == 0 && pp[i][1] == 1) {
        f0++;
      }
      if (pp[i][0] == 0 && pp[i][1] == 2) {
        f1++;
      }        
      if (pp[i][0] == 1 && pp[i][1] == 2) {
        f2++;
      }
    }
    if (f0 == 0 && f1 == 0 && f2 == 0) {
      cout << 1 << '\n';
      continue;
    }
    Mint ans = 0;                                                                                        
    for (int a = 0; a <= 3 * n; a++) {
      for (int b = 0; b <= 3 * n; b++) {
        for (int c = 0; c <= 3 * n; c++) {
          dp[a][b][c] = 0;
        }
      }
    }
    dp[f0][f1][f2] = 1;
    new_dp[0][0][f0][f1][f2] = 1;
    vector<array<int, 3>> states;
    states.push_back({f0, f1, f2});         
    for (int ff = 0; ff <= 3 * n; ff++) {
      //vector<vector<vector<vector<vector<Mint>>>>> new_dp(4, vector<vector<vector<vector<Mint>>>>(2, vector<vector<vector<Mint>>>(3 * n + 1, vector<vector<Mint>>(3 * n + 1, vector<Mint>(3 * n + 1)))));            
      for (auto& p : states) {
        vis[p[0]][p[1]][p[2]] = true;
      }
      for (int r = 0; r < 3; r++) {
        for (int st = 0; st < 2; st++) {
          vector<array<int, 3>> to_add;
          for (auto& p : states) {
            int a = p[0], b = p[1], c = p[2];  
            if (new_dp[r][st][a][b][c] == 0) {
              continue;
            }            
            int new_r = r + 1;
            if (r == 0) {
              if (a > 0) {
                int new_st = 1;
                new_dp[new_r][new_st][a - 1][b][c] += new_dp[r][st][a][b][c] * a;
                if (!vis[a - 1][b][c]) {
                  to_add.push_back({a - 1, b, c});
                  vis[a - 1][b][c] = true;
                }
              }   
              if (b > 0) {
                int new_st = st;
                new_dp[new_r][new_st][a][b - 1][c + 1] += new_dp[r][st][a][b][c] * b;
                if (!vis[a][b - 1][c + 1]) {
                  to_add.push_back({a, b - 1, c + 1});
                  vis[a][b - 1][c + 1] = true;
                }
              }          
              if (a + b == 0) {
                new_dp[new_r][st][a][b][c] += new_dp[r][st][a][b][c];
              }
            }
            if (r == 1) {
              if (c > 0) {
                int new_st = 1;
                new_dp[new_r][new_st][a][b][c - 1] += new_dp[r][st][a][b][c] * c;
                if (!vis[a][b][c - 1]) {
                  to_add.push_back({a, b, c - 1});
                  vis[a][b][c - 1] = true;
                }
              }    
              if (a > 0) {
                int new_st = st;
                new_dp[new_r][new_st][a - 1][b + 1][c] += new_dp[r][st][a][b][c] * a;
                if (!vis[a - 1][b + 1][c]) {
                  to_add.push_back({a - 1, b + 1, c});
                  vis[a - 1][b + 1][c] = true;
                }
              }
              if (a + c == 0) {
                new_dp[new_r][st][a][b][c] += new_dp[r][st][a][b][c];
              }
            } 
            if (r == 2) {
              if (b > 0) {
                int new_st = 1;
                new_dp[new_r][new_st][a][b - 1][c] += new_dp[r][st][a][b][c] * b;
                if (!vis[a][b - 1][c]) {
                  to_add.push_back({a, b - 1, c});
                  vis[a][b - 1][c] = true;
                }
              }
              if (c > 0) {
                int new_st = st;
                new_dp[new_r][new_st][a + 1][b][c - 1] += new_dp[r][st][a][b][c] * c;
                if (!vis[a + 1][b][c - 1]) {
                  to_add.push_back({a + 1, b, c - 1});
                  vis[a + 1][b][c - 1] = true;
                }
              }
              if (b + c == 0) {
                new_dp[new_r][st][a][b][c] += new_dp[r][st][a][b][c];
              }                        
            }
          }
          for (auto& p : to_add) {
            states.push_back(p);
          }
        }            
      }       
      ans += new_dp[3][1][0][0][0];          
      vector<array<int, 3>> new_states;
      for (auto& p : states) {
        int a = p[0], b = p[1], c = p[2];
        dp[a][b][c] = new_dp[3][1][a][b][c];
        vis[a][b][c] = 0;
        for (int r = 0; r < 4; r++) {
          for (int st = 0; st < 2; st++) {
            new_dp[r][st][a][b][c] = 0;
          }
        }
        new_dp[0][0][a][b][c] = dp[a][b][c];
        if (dp[a][b][c]() > 0) {
          new_states.push_back(p);
        }
      }
      swap(states, new_states);
      if (new_states.empty()) {
        break;
      }
    }
    cout << ans << '\n';
  }
  return 0;
}         
# Verdict Execution time Memory Grader output
1 Correct 1 ms 724 KB Output is correct
2 Correct 1 ms 980 KB Output is correct
3 Correct 4 ms 4436 KB Output is correct
4 Correct 30 ms 14832 KB Output is correct
5 Correct 1770 ms 86100 KB Output is correct
6 Execution timed out 2089 ms 86604 KB Time limit exceeded
7 Execution timed out 2072 ms 116224 KB Time limit exceeded
8 Execution timed out 2081 ms 141096 KB Time limit exceeded
9 Execution timed out 2103 ms 188120 KB Time limit exceeded
10 Execution timed out 2111 ms 218692 KB Time limit exceeded