답안 #65799

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
65799 2018-08-08T21:44:27 Z Benq Collapse (JOI18_collapse) C++14
100 / 100
5231 ms 83760 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
 
using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
 
// #define LOCAL 
 
#ifdef LOCAL 
#else 
    #include "collapse.h"
#endif
 
const int BLOCK = 1000;
 
int N;
 
template<int SZ> struct realDSU {
    int par[SZ], numComp = 0;
    void init(int co) {
        F0R(i,co) par[i] = i;
    }
    
    int get(int x) { // path compression
    	if (par[x] != x) par[x] = get(par[x]);
    	return par[x];
    }
    bool unite(int x, int y) {
        x = get(x), y = get(y);
        if (x == y) return 0;
        if (rand()&1) swap(x,y);
        par[y] = x; numComp --;
        return 1;
    }
};

vi ans;
vector<array<int,3>> change;
vpi tri[MX];
unordered_set<int> from[MX], to[MX];
 
unordered_map<ll,int> u;
vpi ru;

ll hsh(pi cur) { return (ll)cur.f*MX+cur.s; }

int m[MX];
realDSU<2*BLOCK> R;
int mini(const vpi& v) {
    int co = 0;
    for (auto a: v) m[a.f] = m[a.s] = -1;
    for (auto a: v) {
        if (m[a.f] == -1) m[a.f] = co ++;
        if (m[a.s] == -1) m[a.s] = co ++;
    }
    R.init(co);
    int res = 0;
    for (auto a: v) 
    	if (R.unite(m[a.f],m[a.s])) res ++;
    return res;
}
 
vector<pair<pi,bitset<BLOCK>>> todo;
 
void solveA() {
	realDSU<MX> A = realDSU<MX>(); 
	A.init(N);
	
    int ind = 0;
    F0R(i,N) {
        A.numComp ++;
    	for (int x: to[i]) A.unite(x,i);
        while (ind < sz(todo) && todo[ind].f.f == i) {
        	ans[todo[ind].f.s] += A.numComp;
        	
        	vpi tmp;
        	F0R(j,sz(ru)) if (todo[ind].s[j] == 1 && ru[j].s <= i)
        		tmp.pb({A.get(ru[j].f),A.get(ru[j].s)});
        		
        	ans[todo[ind].f.s] -= mini(tmp);
        	ind ++;
        }
    }
}
 
void solveB() {
	realDSU<MX> B = realDSU<MX>();
	B.init(N);
	
	int ind = 0;
    F0R(i,N) {
        B.numComp ++;
        for (int x: from[N-1-i]) B.unite(x,N-1-i);
        while (ind < sz(todo) && todo[ind].f.f+1 == N-1-i) {
        	ans[todo[ind].f.s] += B.numComp;
        	
        	vpi tmp;
        	F0R(j,sz(ru)) if (todo[ind].s[j] == 1 && ru[j].f >= N-1-i)
        		tmp.pb({B.get(ru[j].f),B.get(ru[j].s)});
        		
        	ans[todo[ind].f.s] -= mini(tmp);
        	ind ++;
        }
    }
}
 
void genDSU() {
    sort(all(todo),[](const auto& a, const auto& b) { return a.f < b.f;});
    solveA();
    reverse(all(todo)); 
    solveB();
	todo.clear();
}

void process(int l, int r) {
	u.clear(), ru.clear();
	bitset<BLOCK> b = bitset<BLOCK>();
    FOR(i,l,r+1) {
        pi cur = {change[i][1],change[i][2]};
        if (!u.count((ll)cur.f*MX+cur.s)) {
        	int t = sz(u);
        	u[hsh(cur)] = t;
        	ru.pb(cur);
        }
        if (from[cur.f].count(cur.s)) {
        	from[cur.f].erase(cur.s); to[cur.s].erase(cur.f);
            b[u[hsh(cur)]] = 1;
        }
    }
    FOR(i,l,r+1) {
        pi cur = {change[i][1],change[i][2]};
        if (change[i][0] == 0) b[u[hsh(cur)]] = 1;
        else b[u[hsh(cur)]] = 0;
        for (auto a: tri[i]) todo.pb({a,b});
    }
    genDSU();
    F0R(i,sz(ru)) if (b[i] == 1) {
    	pi a = ru[i];
    	from[a.f].insert(a.s), to[a.s].insert(a.f);
    }
}
 
vi simulateCollapse(int n, vi T, vi X, vi Y, vi W, vi P) {
    N = n; 
    
    F0R(i,sz(X)) {
        if (X[i] > Y[i]) swap(X[i],Y[i]);
        change.pb({T[i],X[i],Y[i]});
    }
    
    ans.resize(sz(W));
    F0R(i,sz(ans)) tri[W[i]].pb({P[i],i});
    
    for (int i = 0; i < sz(X); i += BLOCK) process(i,min(i+BLOCK,sz(X))-1);
    return ans;
}
 
#ifdef LOCAL 
 
int main(int argc, char *argv[]) {
	int N, C, Q;
	//cin >> N;
	//C = Q = N; 
	scanf("%d%d%d", &N, &C, &Q);
	std::vector<int> T(C), X(C), Y(C);
	for(int i = 0; i < C; i++) {
		// T[i] = 0; X[i] = rand() % N, Y[i] = rand() % N;
		scanf("%d%d%d", &T[i], &X[i], &Y[i]);
	}
	std::vector<int> W(Q), P(Q);
	for(int i = 0; i < Q; i++) {
		// W[i] = rand() % N; P[i] = rand() % (N-1);
		scanf("%d%d", &W[i], &P[i]);
	}
	auto res = simulateCollapse(N, T, X, Y, W, P);
	printf("%d\n",Q);
	for(auto i : res) {
		printf("%d\n", i);
	}
}
 
/*
5 8 2
0 0 1
0 1 3
0 2 4
0 4 0
1 1 3
0 0 3
0 1 2
0 4 3
3 1
7 3
*/
#endif
 
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# 결과 실행 시간 메모리 Grader output
1 Correct 20 ms 14708 KB Output is correct
2 Correct 19 ms 15232 KB Output is correct
3 Correct 22 ms 15232 KB Output is correct
4 Correct 23 ms 15272 KB Output is correct
5 Correct 25 ms 15272 KB Output is correct
6 Correct 87 ms 15368 KB Output is correct
7 Correct 22 ms 15472 KB Output is correct
8 Correct 20 ms 15472 KB Output is correct
9 Correct 38 ms 15472 KB Output is correct
10 Correct 130 ms 15472 KB Output is correct
11 Correct 136 ms 15576 KB Output is correct
12 Correct 204 ms 15576 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 78 ms 34904 KB Output is correct
2 Correct 117 ms 34904 KB Output is correct
3 Correct 295 ms 34904 KB Output is correct
4 Correct 187 ms 34904 KB Output is correct
5 Correct 1077 ms 34904 KB Output is correct
6 Correct 1345 ms 34904 KB Output is correct
7 Correct 2660 ms 34904 KB Output is correct
8 Correct 1059 ms 34904 KB Output is correct
9 Correct 96 ms 34904 KB Output is correct
10 Correct 127 ms 34904 KB Output is correct
11 Correct 1059 ms 35120 KB Output is correct
12 Correct 1199 ms 35120 KB Output is correct
13 Correct 3056 ms 35120 KB Output is correct
14 Correct 3965 ms 35120 KB Output is correct
15 Correct 3566 ms 37456 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 78 ms 37720 KB Output is correct
2 Correct 106 ms 37720 KB Output is correct
3 Correct 144 ms 37720 KB Output is correct
4 Correct 188 ms 37720 KB Output is correct
5 Correct 1195 ms 37720 KB Output is correct
6 Correct 1424 ms 37720 KB Output is correct
7 Correct 2198 ms 37720 KB Output is correct
8 Correct 3331 ms 37720 KB Output is correct
9 Correct 116 ms 37772 KB Output is correct
10 Correct 2185 ms 37772 KB Output is correct
11 Correct 4920 ms 37772 KB Output is correct
12 Correct 4825 ms 39116 KB Output is correct
13 Correct 4921 ms 41072 KB Output is correct
14 Correct 4614 ms 44176 KB Output is correct
15 Correct 4787 ms 46256 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 20 ms 14708 KB Output is correct
2 Correct 19 ms 15232 KB Output is correct
3 Correct 22 ms 15232 KB Output is correct
4 Correct 23 ms 15272 KB Output is correct
5 Correct 25 ms 15272 KB Output is correct
6 Correct 87 ms 15368 KB Output is correct
7 Correct 22 ms 15472 KB Output is correct
8 Correct 20 ms 15472 KB Output is correct
9 Correct 38 ms 15472 KB Output is correct
10 Correct 130 ms 15472 KB Output is correct
11 Correct 136 ms 15576 KB Output is correct
12 Correct 204 ms 15576 KB Output is correct
13 Correct 78 ms 34904 KB Output is correct
14 Correct 117 ms 34904 KB Output is correct
15 Correct 295 ms 34904 KB Output is correct
16 Correct 187 ms 34904 KB Output is correct
17 Correct 1077 ms 34904 KB Output is correct
18 Correct 1345 ms 34904 KB Output is correct
19 Correct 2660 ms 34904 KB Output is correct
20 Correct 1059 ms 34904 KB Output is correct
21 Correct 96 ms 34904 KB Output is correct
22 Correct 127 ms 34904 KB Output is correct
23 Correct 1059 ms 35120 KB Output is correct
24 Correct 1199 ms 35120 KB Output is correct
25 Correct 3056 ms 35120 KB Output is correct
26 Correct 3965 ms 35120 KB Output is correct
27 Correct 3566 ms 37456 KB Output is correct
28 Correct 78 ms 37720 KB Output is correct
29 Correct 106 ms 37720 KB Output is correct
30 Correct 144 ms 37720 KB Output is correct
31 Correct 188 ms 37720 KB Output is correct
32 Correct 1195 ms 37720 KB Output is correct
33 Correct 1424 ms 37720 KB Output is correct
34 Correct 2198 ms 37720 KB Output is correct
35 Correct 3331 ms 37720 KB Output is correct
36 Correct 116 ms 37772 KB Output is correct
37 Correct 2185 ms 37772 KB Output is correct
38 Correct 4920 ms 37772 KB Output is correct
39 Correct 4825 ms 39116 KB Output is correct
40 Correct 4921 ms 41072 KB Output is correct
41 Correct 4614 ms 44176 KB Output is correct
42 Correct 4787 ms 46256 KB Output is correct
43 Correct 771 ms 46256 KB Output is correct
44 Correct 3340 ms 48100 KB Output is correct
45 Correct 1272 ms 48100 KB Output is correct
46 Correct 3218 ms 53008 KB Output is correct
47 Correct 126 ms 56768 KB Output is correct
48 Correct 140 ms 57252 KB Output is correct
49 Correct 1259 ms 58944 KB Output is correct
50 Correct 2158 ms 58944 KB Output is correct
51 Correct 1608 ms 58944 KB Output is correct
52 Correct 3275 ms 58944 KB Output is correct
53 Correct 3672 ms 58944 KB Output is correct
54 Correct 3815 ms 63744 KB Output is correct
55 Correct 4483 ms 65876 KB Output is correct
56 Correct 4837 ms 69860 KB Output is correct
57 Correct 5231 ms 74052 KB Output is correct
58 Correct 4288 ms 76984 KB Output is correct
59 Correct 4886 ms 80648 KB Output is correct
60 Correct 5022 ms 83760 KB Output is correct