이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
/*
1. Root the tree at node 1.
2. Run DFS to calculate the number of people living in each subtree.
3. Run another DFS to decide the best city for the arena. If we treat the current city as the
arena, then the most congested road will be one of the edges incident to it.
*/
#include "traffic.h"
#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000000
vector<int> adj[MAXN + 3];
int P[MAXN + 3], sz[MAXN + 3], bestTraffic, bestCity;
void dfs1(int u, int prev) {
sz[u] = P[u];
for (auto v: adj[u]) {
if (v != prev) {
dfs1(v, u);
sz[u] += sz[v];
}
}
}
void dfs2(int u, int prev) {
int maxTraffic = sz[1] - sz[u]; // From u to its parent
for (auto v: adj[u]) {
if (v != prev) {
maxTraffic = max(maxTraffic, sz[v]);
}
}
if (maxTraffic < bestTraffic) {
bestTraffic = maxTraffic;
bestCity = u;
}
for (auto v: adj[u]) {
if (v != prev) {
dfs2(v, u);
}
}
}
int LocateCentre(int N, int p[], int S[], int D[]) {
for (int i = 0; i < N; i++) P[i] = p[i];
for (int i = 0; i < N - 1; i++) {
adj[S[i]].push_back(D[i]);
adj[D[i]].push_back(S[i]);
}
dfs1(1, -1);
bestTraffic = 2000000001;
bestCity = -1;
dfs2(1, -1);
return bestCity;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |