Submission #652457

# Submission time Handle Problem Language Result Execution time Memory
652457 2022-10-22T17:04:36 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 65612 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	vvll sm(2, vll(N, 0));
	for(int j = 0; j < M; j++)
		if(X[j] < 2)
			sm[X[j]][Y[j]] += W[j];
 
	if(N == 2)
	{
		return max(sm[0][0] + sm[0][1], sm[1][0] + sm[1][1]);
	}

 
	int xmx = 0;
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		xmx = max(xmx, X[j] + 2);
		Y[j]++;
	}
	xmx = min(xmx, N);
 
	// cerr << "xmx = " << xmx << '\n';
 
	vpll fish[1+N];
	ll* fishpref[1+N];
 
	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= xmx; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = new ll[sz(fish[r])];
		for(int i = 0; i < sz(fish[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = new ll[1];
	fishpref[0][0] = 0;
 
	// vvll inc(1+N), dec(1+N);
	ll* inc[1+N];
	ll* dec[1+N];
	ll* incpref[1+N];
	ll* decpref[1+N]; //pref inc dec mx
	inc[0] = new ll[1];
	inc[0][0] = 0;

	dec[0] = new ll[1];
	dec[0][0] = 0;
 
 	ll res = 0;
	// cerr << "done\n";
 
	for(int r = 1; r <= xmx; r++)
	{
		incpref[r-1] = new ll[sz(fish[r-1])];
		decpref[r-1] = new ll[sz(fish[r-1])];

		incpref[r-1][0] = decpref[r-1][0] = 0;

		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		// inc[r] = dec[r] = vll(sz(fish[r]), 0);
		inc[r] = new ll[sz(fish[r])];
		dec[r] = new ll[sz(fish[r])];
		for(int i = 0; i < sz(fish[r]); i++)
			inc[r][i] = dec[r][i] = 0;
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
 
			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];
 
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}
 
				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;
 
		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;
 
			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
	
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;
 
		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}

		for(int i = 0; i < sz(fish[r]); i++)
			selfmax(res, max(inc[r][i], dec[r][i]));
	}
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 52 ms 24328 KB Output is correct
2 Correct 71 ms 27676 KB Output is correct
3 Correct 10 ms 15940 KB Output is correct
4 Correct 9 ms 15940 KB Output is correct
5 Correct 188 ms 64052 KB Output is correct
6 Correct 253 ms 65612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1086 ms 29120 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 15940 KB Output is correct
2 Correct 43 ms 36188 KB Output is correct
3 Correct 77 ms 34672 KB Output is correct
4 Correct 63 ms 35384 KB Output is correct
5 Correct 88 ms 39428 KB Output is correct
6 Correct 85 ms 39332 KB Output is correct
7 Correct 86 ms 39408 KB Output is correct
8 Correct 86 ms 39476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 4 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 4 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5844 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5984 KB Output is correct
17 Correct 23 ms 10104 KB Output is correct
18 Correct 29 ms 10676 KB Output is correct
19 Correct 22 ms 10708 KB Output is correct
20 Correct 22 ms 10568 KB Output is correct
21 Correct 20 ms 10472 KB Output is correct
22 Correct 42 ms 15292 KB Output is correct
23 Correct 7 ms 6660 KB Output is correct
24 Correct 18 ms 8700 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 7 ms 6612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 4 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5844 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5984 KB Output is correct
17 Correct 23 ms 10104 KB Output is correct
18 Correct 29 ms 10676 KB Output is correct
19 Correct 22 ms 10708 KB Output is correct
20 Correct 22 ms 10568 KB Output is correct
21 Correct 20 ms 10472 KB Output is correct
22 Correct 42 ms 15292 KB Output is correct
23 Correct 7 ms 6660 KB Output is correct
24 Correct 18 ms 8700 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 7 ms 6612 KB Output is correct
27 Correct 7 ms 6868 KB Output is correct
28 Correct 135 ms 28312 KB Output is correct
29 Correct 277 ms 34900 KB Output is correct
30 Correct 151 ms 34652 KB Output is correct
31 Correct 157 ms 34640 KB Output is correct
32 Correct 156 ms 37456 KB Output is correct
33 Correct 157 ms 34764 KB Output is correct
34 Correct 165 ms 34708 KB Output is correct
35 Correct 59 ms 17584 KB Output is correct
36 Correct 150 ms 35672 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 15940 KB Output is correct
2 Correct 43 ms 36188 KB Output is correct
3 Correct 77 ms 34672 KB Output is correct
4 Correct 63 ms 35384 KB Output is correct
5 Correct 88 ms 39428 KB Output is correct
6 Correct 85 ms 39332 KB Output is correct
7 Correct 86 ms 39408 KB Output is correct
8 Correct 86 ms 39476 KB Output is correct
9 Correct 123 ms 44872 KB Output is correct
10 Correct 72 ms 26332 KB Output is correct
11 Correct 149 ms 46784 KB Output is correct
12 Correct 5 ms 5716 KB Output is correct
13 Correct 5 ms 5740 KB Output is correct
14 Correct 4 ms 5716 KB Output is correct
15 Correct 5 ms 5716 KB Output is correct
16 Correct 3 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 8 ms 15940 KB Output is correct
19 Correct 9 ms 15864 KB Output is correct
20 Correct 47 ms 36220 KB Output is correct
21 Correct 48 ms 36180 KB Output is correct
22 Correct 112 ms 45340 KB Output is correct
23 Correct 158 ms 53176 KB Output is correct
24 Correct 134 ms 54524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 52 ms 24328 KB Output is correct
2 Correct 71 ms 27676 KB Output is correct
3 Correct 10 ms 15940 KB Output is correct
4 Correct 9 ms 15940 KB Output is correct
5 Correct 188 ms 64052 KB Output is correct
6 Correct 253 ms 65612 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1086 ms 29120 KB Time limit exceeded
9 Halted 0 ms 0 KB -