Submission #652453

# Submission time Handle Problem Language Result Execution time Memory
652453 2022-10-22T17:01:27 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 65692 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	vvll sm(2, vll(N, 0));
	for(int j = 0; j < M; j++)
		if(X[j] < 2)
			sm[X[j]][Y[j]] += W[j];
 
	if(N == 2)
	{
		return max(sm[0][0] + sm[0][1], sm[1][0] + sm[1][1]);
	}

 
	int xmx = 0;
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		xmx = max(xmx, X[j] + 2);
		Y[j]++;
	}
	xmx = min(xmx, N);
 
	// cerr << "xmx = " << xmx << '\n';
 
	vpll fish[1+N];
	ll* fishpref[1+N];
 
	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= xmx; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = new ll[sz(fish[r])];
		for(int i = 0; i < sz(fish[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = new ll[1];
	fishpref[0][0] = 0;
 
	// vvll inc(1+N), dec(1+N);
	ll* inc[1+N];
	ll* dec[1+N];
	ll* incpref[1+N];
	ll* decpref[1+N]; //pref inc dec mx
	inc[0] = new ll[1];
	inc[0][0] = 0;

	dec[0] = new ll[1];
	dec[0][0] = 0;
 
 	ll res = 0;
	// cerr << "done\n";
 
	for(int r = 1; r <= xmx; r++)
	{
		incpref[r-1] = new ll[sz(fish[r-1])];
		decpref[r-1] = new ll[sz(fish[r-1])];

		incpref[r-1][0] = decpref[r-1][0] = 0;

		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		// inc[r] = dec[r] = vll(sz(fish[r]), 0);
		inc[r] = new ll[sz(fish[r])];
		dec[r] = new ll[sz(fish[r])];
		for(int i = 0; i < sz(fish[r]); i++)
			inc[r][i] = dec[r][i] = 0;
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
 
			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];
 
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}
 
				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;
 
		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;
 
			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
	
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;
 
		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}

		for(int i = 0; i < sz(fish[r]); i++)
			selfmax(res, max(inc[r][i], dec[r][i]));
	}
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 68 ms 24412 KB Output is correct
2 Correct 67 ms 27604 KB Output is correct
3 Correct 10 ms 15924 KB Output is correct
4 Correct 8 ms 15940 KB Output is correct
5 Correct 202 ms 63996 KB Output is correct
6 Correct 263 ms 65692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1082 ms 29064 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 15940 KB Output is correct
2 Correct 45 ms 36248 KB Output is correct
3 Correct 64 ms 34656 KB Output is correct
4 Correct 73 ms 35324 KB Output is correct
5 Correct 83 ms 39332 KB Output is correct
6 Correct 81 ms 39348 KB Output is correct
7 Correct 82 ms 39324 KB Output is correct
8 Correct 84 ms 39432 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5684 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5712 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 4 ms 6080 KB Output is correct
11 Correct 3 ms 5796 KB Output is correct
12 Correct 5 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5684 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5712 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 4 ms 6080 KB Output is correct
11 Correct 3 ms 5796 KB Output is correct
12 Correct 5 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 28 ms 10120 KB Output is correct
18 Correct 25 ms 10700 KB Output is correct
19 Correct 24 ms 10540 KB Output is correct
20 Correct 23 ms 10580 KB Output is correct
21 Correct 22 ms 10544 KB Output is correct
22 Correct 45 ms 15292 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 15 ms 8712 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 7 ms 6612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5684 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5712 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 4 ms 6080 KB Output is correct
11 Correct 3 ms 5796 KB Output is correct
12 Correct 5 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 28 ms 10120 KB Output is correct
18 Correct 25 ms 10700 KB Output is correct
19 Correct 24 ms 10540 KB Output is correct
20 Correct 23 ms 10580 KB Output is correct
21 Correct 22 ms 10544 KB Output is correct
22 Correct 45 ms 15292 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 15 ms 8712 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 7 ms 6612 KB Output is correct
27 Correct 6 ms 6868 KB Output is correct
28 Correct 153 ms 28212 KB Output is correct
29 Correct 286 ms 34928 KB Output is correct
30 Correct 135 ms 34712 KB Output is correct
31 Correct 171 ms 34728 KB Output is correct
32 Correct 175 ms 37524 KB Output is correct
33 Correct 144 ms 34640 KB Output is correct
34 Correct 145 ms 34768 KB Output is correct
35 Correct 58 ms 17704 KB Output is correct
36 Correct 156 ms 35660 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 15940 KB Output is correct
2 Correct 45 ms 36248 KB Output is correct
3 Correct 64 ms 34656 KB Output is correct
4 Correct 73 ms 35324 KB Output is correct
5 Correct 83 ms 39332 KB Output is correct
6 Correct 81 ms 39348 KB Output is correct
7 Correct 82 ms 39324 KB Output is correct
8 Correct 84 ms 39432 KB Output is correct
9 Correct 104 ms 44796 KB Output is correct
10 Correct 69 ms 26372 KB Output is correct
11 Correct 151 ms 46720 KB Output is correct
12 Correct 3 ms 5844 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 4 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 9 ms 15940 KB Output is correct
19 Correct 8 ms 15940 KB Output is correct
20 Correct 44 ms 36272 KB Output is correct
21 Correct 47 ms 36284 KB Output is correct
22 Correct 127 ms 45340 KB Output is correct
23 Correct 168 ms 53132 KB Output is correct
24 Correct 133 ms 54460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 68 ms 24412 KB Output is correct
2 Correct 67 ms 27604 KB Output is correct
3 Correct 10 ms 15924 KB Output is correct
4 Correct 8 ms 15940 KB Output is correct
5 Correct 202 ms 63996 KB Output is correct
6 Correct 263 ms 65692 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1082 ms 29064 KB Time limit exceeded
9 Halted 0 ms 0 KB -