Submission #651776

# Submission time Handle Problem Language Result Execution time Memory
651776 2022-10-20T02:05:09 Z ghostwriter Tropical Garden (IOI11_garden) C++14
69 / 100
5000 ms 10880 KB
#pragma GCC optimize ("Ofast")
#pragma GCC target ("avx2")
#include "garden.h"
#include "gardenlib.h"
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.h>
#include "grader.cpp"
#else
#define debug(...)
#endif
#define ft front
#define bk back
#define st first
#define nd second
#define ins insert
#define ers erase
#define pb push_back
#define pf push_front
#define _pb pop_back
#define _pf pop_front
#define lb lower_bound
#define ub upper_bound
#define mtp make_tuple
#define bg begin
#define ed end
#define all(x) x.bg(), x.ed()
#define sz(x) (int)x.size()
typedef long long ll; typedef unsigned long long ull;
typedef double db; typedef long double ldb;
typedef pair<int, int> pi; typedef pair<ll, ll> pll;
typedef vector<int> vi; typedef vector<ll> vll; typedef vector<pi> vpi; typedef vector<pll> vpll;
typedef string str;
template<typename T> T gcd(T a, T b) { return (b == 0? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
#define FOR(i, l, r) for (int i = l; i <= r; ++i)
#define FOS(i, r, l) for (int i = r; i >= l; --i)
#define FRN(i, n) for (int i = 0; i < n; ++i)
#define FSN(i, n) for (int i = n - 1; i >= 0; --i)
#define EACH(i, x) for (auto &i : x)
#define WHILE while
#define file "TEST"
mt19937 rd(chrono::steady_clock::now().time_since_epoch().count());
ll rand(ll l, ll r) { return uniform_int_distribution<ll>(l, r)(rd); }
/*
----------------------------------------------------------------
    END OF TEMPLATE
----------------------------------------------------------------
    Tran The Bao - ghostwriter
    Training for VOI23 gold medal
----------------------------------------------------------------
    GOAT
----------------------------------------------------------------
*/
const int MAXN = 15e4;
const int MAXQ = 2000;
int c[MAXN][2], s[MAXN][2], d[MAXN][2], oud[MAXN], ans[MAXQ];
pi cur[MAXQ];
bool ind[MAXN][2], c1[MAXN][2];
int adj[MAXN][2];
pi e[MAXN];
pi nxt(pi x) {
    int u = x.st;
    bool stt = x.nd;
    int id = (!stt? 0 : oud[u] == 1? 0 : 1);
    int nxtv = e[adj[u][id]].st == u? e[adj[u][id]].nd : e[adj[u][id]].st;
    return {nxtv, adj[u][id] == adj[nxtv][0]? 1 : 0};
}
void count_routes(int N, int M, int P, int R[][2], int Q, int G[]) {
    FRN(i, M) {
        int u = R[i][0], v = R[i][1];
        e[i] = {u, v};
        if (oud[u] < 2) adj[u][oud[u]++] = i;
        if (oud[v] < 2) adj[v][oud[v]++] = i;
    }
    vpi ver;
    ver.resize(2 * N);
    ver.clear();
    FRN(i, N)
    FRN(j, 2) {
        pi tmp1 = nxt({i, j});
        ind[tmp1.st][tmp1.nd] = 1;
        if (c1[i][j]) continue;
        pi cur = {i, j};
        ver.clear();
        WHILE(1) {
            if (!c[cur.st][cur.nd]) ver.pb(cur);
            ++c[cur.st][cur.nd];
            cur = nxt(cur);
            if (c1[cur.st][cur.nd] || c[cur.st][cur.nd] == 2) break;
        }
        reverse(all(ver));
        if (c[ver.ft().st][ver.ft().nd] == 2) {
            int cnt = 0, h = 0;
            EACH(z, ver) if (c[z.st][z.nd] == 2) ++cnt;
            EACH(z, ver) {
                if (c[z.st][z.nd] == 1) ++h;
                s[z.st][z.nd] = cnt;
                d[z.st][z.nd] = h;
            }
        }
        else {
            pi tmp = nxt(ver.ft());
            int cnt = s[tmp.st][tmp.nd], h = d[tmp.st][tmp.nd];
            EACH(z, ver) {
                ++h;
                s[z.st][z.nd] = cnt;
                d[z.st][z.nd] = h;
            }
        }
        EACH(z, ver) c1[z.st][z.nd] = 1;
    }
    memset(c, 0, sizeof c);
    FRN(i, N)
    FRN(j, 2) {
        if (ind[i][j]) continue;
        FRN(z, Q) {
            int x = G[z];
            int x1 = x;
            if (x1 > d[i][j]) {
                x1 -= d[i][j];
                x1 %= s[i][j];
                x1 += d[i][j];
            }
            cur[z] = {i, j};
            FOR(y, 1, x1) cur[z] = nxt(cur[z]);
            if (!j && cur[z].st == P) ++ans[z];
        }
        c[i][j] = 1;
        pi cur1 = nxt({i, j});
        WHILE(!c[cur1.st][cur1.nd]) {
            FRN(z, Q) {
                cur[z] = nxt(cur[z]);
                if (!cur1.nd && cur[z].st == P) ++ans[z];
            }
            c[cur1.st][cur1.nd] = 1;
            cur1 = nxt(cur1);
        }
    }
    FRN(i, N)
    FRN(j, 2) {
        if (c[i][j]) continue;
        FRN(z, Q) {
            int x = G[z];
            int x1 = x;
            x1 %= s[i][j];
            cur[z] = {i, j};
            FOR(y, 1, x1) cur[z] = nxt(cur[z]);
            if (!j && cur[z].st == P) ++ans[z];
        }
        c[i][j] = 1;
        pi cur1 = nxt({i, j});
        WHILE(!c[cur1.st][cur1.nd]) {
            FRN(z, Q) {
                cur[z] = nxt(cur[z]);
                if (!cur1.nd && cur[z].st == P) ++ans[z];
            }
            c[cur1.st][cur1.nd] = 1;
            cur1 = nxt(cur1);
        }
    }
    FRN(q, Q) answer(ans[q]);
}
/*
5 5 2
1 0
1 2
3 2
1 3
4 2
2
3 1
1 2

0 0 1 1
0 1 1 1
1 0 0 1
1 1 2 1
2 0 1 0
2 1 3 1
3 0 2 0
3 1 1 0
4 0 2 0
4 1 2 0
----------------------------------------------------------------
From Benq:
    stuff you should look for
        * int overflow, array bounds
        * special cases (n=1?)
        * do smth instead of nothing and stay organized
        * WRITE STUFF DOWN
        * DON'T GET STUCK ON ONE APPROACH
----------------------------------------------------------------
*/


# Verdict Execution time Memory Grader output
1 Correct 1 ms 1492 KB Output is correct
2 Correct 1 ms 1492 KB Output is correct
3 Correct 1 ms 1492 KB Output is correct
4 Correct 1 ms 1492 KB Output is correct
5 Correct 1 ms 1492 KB Output is correct
6 Correct 1 ms 1620 KB Output is correct
7 Correct 1 ms 1492 KB Output is correct
8 Correct 1 ms 1492 KB Output is correct
9 Correct 3 ms 1620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1492 KB Output is correct
2 Correct 1 ms 1492 KB Output is correct
3 Correct 1 ms 1492 KB Output is correct
4 Correct 1 ms 1492 KB Output is correct
5 Correct 1 ms 1492 KB Output is correct
6 Correct 1 ms 1620 KB Output is correct
7 Correct 1 ms 1492 KB Output is correct
8 Correct 1 ms 1492 KB Output is correct
9 Correct 3 ms 1620 KB Output is correct
10 Correct 1 ms 1492 KB Output is correct
11 Correct 316 ms 2900 KB Output is correct
12 Correct 400 ms 4052 KB Output is correct
13 Correct 36 ms 6732 KB Output is correct
14 Correct 92 ms 10060 KB Output is correct
15 Correct 113 ms 10140 KB Output is correct
16 Correct 1756 ms 7868 KB Output is correct
17 Correct 75 ms 7140 KB Output is correct
18 Correct 86 ms 3996 KB Output is correct
19 Correct 93 ms 9972 KB Output is correct
20 Correct 115 ms 10148 KB Output is correct
21 Correct 600 ms 7920 KB Output is correct
22 Correct 71 ms 7212 KB Output is correct
23 Correct 576 ms 10880 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1492 KB Output is correct
2 Correct 1 ms 1492 KB Output is correct
3 Correct 1 ms 1492 KB Output is correct
4 Correct 1 ms 1492 KB Output is correct
5 Correct 1 ms 1492 KB Output is correct
6 Correct 1 ms 1620 KB Output is correct
7 Correct 1 ms 1492 KB Output is correct
8 Correct 1 ms 1492 KB Output is correct
9 Correct 3 ms 1620 KB Output is correct
10 Correct 1 ms 1492 KB Output is correct
11 Correct 316 ms 2900 KB Output is correct
12 Correct 400 ms 4052 KB Output is correct
13 Correct 36 ms 6732 KB Output is correct
14 Correct 92 ms 10060 KB Output is correct
15 Correct 113 ms 10140 KB Output is correct
16 Correct 1756 ms 7868 KB Output is correct
17 Correct 75 ms 7140 KB Output is correct
18 Correct 86 ms 3996 KB Output is correct
19 Correct 93 ms 9972 KB Output is correct
20 Correct 115 ms 10148 KB Output is correct
21 Correct 600 ms 7920 KB Output is correct
22 Correct 71 ms 7212 KB Output is correct
23 Correct 576 ms 10880 KB Output is correct
24 Correct 10 ms 1492 KB Output is correct
25 Execution timed out 5026 ms 2980 KB Time limit exceeded
26 Halted 0 ms 0 KB -