Submission #651756

# Submission time Handle Problem Language Result Execution time Memory
651756 2022-10-20T01:35:14 Z ghostwriter Tropical Garden (IOI11_garden) C++14
69 / 100
5000 ms 16932 KB
#pragma GCC optimize ("Ofast")
#pragma GCC target ("avx2")
#include "garden.h"
#include "gardenlib.h"
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.h>
#include "grader.cpp"
#else
#define debug(...)
#endif
#define ft front
#define bk back
#define st first
#define nd second
#define ins insert
#define ers erase
#define pb push_back
#define pf push_front
#define _pb pop_back
#define _pf pop_front
#define lb lower_bound
#define ub upper_bound
#define mtp make_tuple
#define bg begin
#define ed end
#define all(x) x.bg(), x.ed()
#define sz(x) (int)x.size()
typedef long long ll; typedef unsigned long long ull;
typedef double db; typedef long double ldb;
typedef pair<int, int> pi; typedef pair<ll, ll> pll;
typedef vector<int> vi; typedef vector<ll> vll; typedef vector<pi> vpi; typedef vector<pll> vpll;
typedef string str;
template<typename T> T gcd(T a, T b) { return (b == 0? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
#define FOR(i, l, r) for (int i = l; i <= r; ++i)
#define FOS(i, r, l) for (int i = r; i >= l; --i)
#define FRN(i, n) for (int i = 0; i < n; ++i)
#define FSN(i, n) for (int i = n - 1; i >= 0; --i)
#define EACH(i, x) for (auto &i : x)
#define WHILE while
#define file "TEST"
mt19937 rd(chrono::steady_clock::now().time_since_epoch().count());
ll rand(ll l, ll r) { return uniform_int_distribution<ll>(l, r)(rd); }
/*
----------------------------------------------------------------
    END OF TEMPLATE
----------------------------------------------------------------
    Tran The Bao - ghostwriter
    Training for VOI23 gold medal
----------------------------------------------------------------
    GOAT
----------------------------------------------------------------
*/
const int MAXN = 15e4 + 5;
int ind[MAXN][2], c[MAXN][2], c1[MAXN][2], s[MAXN][2], d[MAXN][2];
vi adj[MAXN];
vpi e;
pi nxt(pi x) {
    int u = x.st;
    bool stt = x.nd;
    int id = (!stt? 0 : sz(adj[u]) == 1? 0 : 1);
    int nxtv = e[adj[u][id]].st == u? e[adj[u][id]].nd : e[adj[u][id]].st;
    return {nxtv, adj[u][id] == adj[nxtv][0]? 1 : 0};
}
int cal(int N, int P, int x) {
    memset(c, 0, sizeof c);
    int ans = 0;
    FRN(i, N)
    FRN(j, 2) {
        if (ind[i][j]) continue;
        int x1 = x;
        if (x1 > d[i][j]) {
            x1 -= d[i][j];
            x1 %= s[i][j];
            x1 += d[i][j];
        }
        pi cur = {i, j};
        FOR(z, 1, x1) cur = nxt(cur);
        if (cur.st == P && !j) ++ans;
        c[i][j] = 1;
        pi cur1 = nxt({i, j});
        WHILE(!c[cur1.st][cur1.nd]) {
            cur = nxt(cur);
            if (cur.st == P && !cur1.nd) ++ans;
            c[cur1.st][cur1.nd] = 1;
            cur1 = nxt(cur1);
        }
    }
    FRN(i, N)
    FRN(j, 2) {
        if (c[i][j]) continue;
        int x1 = x % s[i][j];
        pi cur = {i, j};
        FOR(z, 1, x1) cur = nxt(cur);
        if (cur.st == P && !j) ++ans;
        c[i][j] = 1;
        pi cur1 = nxt({i, j});
        WHILE(!c[cur1.st][cur1.nd]) {
            cur = nxt(cur);
            if (cur.st == P && !cur1.nd) ++ans;
            c[cur1.st][cur1.nd] = 1;
            cur1 = nxt(cur1);
        }   
    }
    return ans;
}
void count_routes(int N, int M, int P, int R[][2], int Q, int G[]) {
    FRN(i, M) {
        int u = R[i][0], v = R[i][1];
        e.pb({u, v});
        adj[u].pb(i);
        adj[v].pb(i);
    }
    FRN(i, N)
    FRN(j, 2) {
        pi tmp1 = nxt({i, j});
        ind[tmp1.st][tmp1.nd] = 1;
        if (c1[i][j]) continue;
        vpi ver;
        pi cur = {i, j};
        WHILE(1) {
            if (!c[cur.st][cur.nd]) ver.pb(cur);
            ++c[cur.st][cur.nd];
            cur = nxt(cur);
            if (c1[cur.st][cur.nd] || c[cur.st][cur.nd] == 2) break;
        }
        reverse(all(ver));
        if (c[ver.ft().st][ver.ft().nd] == 2) {
            int cnt = 0, h = 0;
            EACH(z, ver) if (c[z.st][z.nd] == 2) ++cnt;
            EACH(z, ver) {
                if (c[z.st][z.nd] == 1) ++h;
                s[z.st][z.nd] = cnt;
                d[z.st][z.nd] = h;
            }
        }
        else {
            pi tmp = nxt(ver.ft());
            int cnt = s[tmp.st][tmp.nd], h = d[tmp.st][tmp.nd];
            EACH(z, ver) {
                ++h;
                s[z.st][z.nd] = cnt;
                d[z.st][z.nd] = h;
            }
        }
        EACH(z, ver) c1[z.st][z.nd] = 1;
    }
    FRN(q, Q) answer(cal(N, P, G[q]));
}
/*
5 5 2
1 0
1 2
3 2
1 3
4 2
2
3 1
1 2

0 0 1 1
0 1 1 1
1 0 0 1
1 1 2 1
2 0 1 0
2 1 3 1
3 0 2 0
3 1 1 0
4 0 2 0
4 1 2 0
----------------------------------------------------------------
From Benq:
    stuff you should look for
        * int overflow, array bounds
        * special cases (n=1?)
        * do smth instead of nothing and stay organized
        * WRITE STUFF DOWN
        * DON'T GET STUCK ON ONE APPROACH
----------------------------------------------------------------
*/


# Verdict Execution time Memory Grader output
1 Correct 4 ms 5076 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 4 ms 5076 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 3 ms 4948 KB Output is correct
6 Correct 4 ms 5096 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 5 ms 5248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5076 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 4 ms 5076 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 3 ms 4948 KB Output is correct
6 Correct 4 ms 5096 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 5 ms 5248 KB Output is correct
10 Correct 3 ms 4948 KB Output is correct
11 Correct 403 ms 6864 KB Output is correct
12 Correct 710 ms 8396 KB Output is correct
13 Correct 44 ms 11952 KB Output is correct
14 Correct 228 ms 15972 KB Output is correct
15 Correct 221 ms 16008 KB Output is correct
16 Correct 2918 ms 13420 KB Output is correct
17 Correct 204 ms 12684 KB Output is correct
18 Correct 156 ms 8248 KB Output is correct
19 Correct 268 ms 15908 KB Output is correct
20 Correct 302 ms 16096 KB Output is correct
21 Correct 1099 ms 13312 KB Output is correct
22 Correct 129 ms 12564 KB Output is correct
23 Correct 1327 ms 16932 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5076 KB Output is correct
2 Correct 3 ms 5076 KB Output is correct
3 Correct 4 ms 5076 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Correct 3 ms 4948 KB Output is correct
6 Correct 4 ms 5096 KB Output is correct
7 Correct 3 ms 4948 KB Output is correct
8 Correct 3 ms 5076 KB Output is correct
9 Correct 5 ms 5248 KB Output is correct
10 Correct 3 ms 4948 KB Output is correct
11 Correct 403 ms 6864 KB Output is correct
12 Correct 710 ms 8396 KB Output is correct
13 Correct 44 ms 11952 KB Output is correct
14 Correct 228 ms 15972 KB Output is correct
15 Correct 221 ms 16008 KB Output is correct
16 Correct 2918 ms 13420 KB Output is correct
17 Correct 204 ms 12684 KB Output is correct
18 Correct 156 ms 8248 KB Output is correct
19 Correct 268 ms 15908 KB Output is correct
20 Correct 302 ms 16096 KB Output is correct
21 Correct 1099 ms 13312 KB Output is correct
22 Correct 129 ms 12564 KB Output is correct
23 Correct 1327 ms 16932 KB Output is correct
24 Correct 73 ms 5036 KB Output is correct
25 Execution timed out 5062 ms 6840 KB Time limit exceeded
26 Halted 0 ms 0 KB -