Submission #648563

# Submission time Handle Problem Language Result Execution time Memory
648563 2022-10-07T03:09:19 Z 406 Hamburg Steak (JOI20_hamburg) C++17
15 / 100
491 ms 402520 KB
#include <bits/stdc++.h>
using namespace std;

#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")

const int N = 2e5 + 50;
const int M = 2 * N + 5;
int l[N], r[N], u[N], d[N], n, k;
bitset<N> used, full;
vector<pair<int, int>> points;
vector<int> X, Y;
int cnt;

void rec();

inline bool inter(int i, int x, int y) {
        return l[i] <= x && x <= r[i] && d[i] <= y && y <= u[i];
}

inline void add_point(int x, int y) {
        vector<int> change;
        for (int i = used._Find_first(); i < n; i = used._Find_next(i)) {
                if (inter(i, x, y)) {
                        cnt--;
                        used[i] = false;
                        change.push_back(i);
                }
        }
        if (change.empty())
                return;
        points.emplace_back(x, y);

        rec();

        for (auto cc: change) used[cc] = true, cnt++;
        points.pop_back();

}
const int V = 2 * 4 * M;
vector<int> adj[V], adj_t[V];
bitset<V> mark, ass;
vector<int> order;
int comp[V];

void dfs1(int v) {
        mark[v] = true;
        for (auto u: adj[v]) if (!mark[u])
                dfs1(u);
        order.push_back(v);
}

void dfs2(int v, int cl) {
        comp[v] = cl;
        for (auto u: adj_t[v]) {
                if (comp[u] == -1)
                        dfs2(u, cl);
        }
}
void solve_2SAT() {
        mark = 0;
        for (int i = 0; i < V; i++) if (!mark[i])
                dfs1(i);
        fill(comp, comp + V, -1);

        assert(order.size() == V);

        for (int i = 0, j = 0; i < V; i++) {
                int v = order[V - i - 1];
                if (comp[v] == -1)
                        dfs2(v, j++);
        }

        for (int i = 0; i < V; i += 2)
                ass[i / 2] = comp[i] > comp[i ^ 1];
}

void add_disjunction(int a, bool na, int b, bool nb) {
        a = (2 * a) ^ na;
        b = (2 * b) ^ nb;
        int neg_a = a ^ 1;
        int neg_b = b ^ 1;
        adj[neg_a].push_back(b);
        adj[neg_b].push_back(a);

        adj_t[b].push_back(neg_a);
        adj_t[a].push_back(neg_b);
}
void add_two(int a, int b, int c, int d) {
        assert(a > 0 && c > 0);
        a--, c--;
        add_disjunction(a, 1, c, 1);
        add_disjunction(a, 1, d, 0);
        add_disjunction(b, 1, c, 1);
        add_disjunction(b, 1, d, 0);
}

void rec() {
        if (!cnt && points.size() <= k) {
                for (int i = 0; i < (int) points.size(); i++)
                        cout << X[points[i].first] << ' ' << Y[points[i].second] << '\n';
                for (int i = points.size(); i < k; i++)
                        cout << 1 << ' ' << 1 << '\n';
                exit(0);
        }
        if (points.size() >= k)
                return;

        int minR = 2 * n;
        int minU = 2 * n;
        int maxD = 0;
        int maxL = 0;

        for (int i = used._Find_first(); i < n; i = used._Find_next(i)) {
                minR = min(minR, r[i]);
                maxL = max(maxL, l[i]);

                minU = min(minU, u[i]);
                maxD = max(maxD, d[i]);
        }

        if (maxL <= minR || maxD <= minU) {
                add_point(minR, minU);
        }
        else {
                add_point(minR, minU);
                add_point(minR, maxD);
                add_point(maxL, minU);
                add_point(maxL, maxD);
                if (points.size())
                        return;

                for (int i = 0; i < n; i++) {
                        l[i] = max(l[i], minR);
                        r[i] = min(r[i], maxL);
                        d[i] = max(d[i], minU);
                        u[i] = min(u[i], maxD);
                        int q = (l[i] == minR) + (r[i] == maxL) + (d[i] == minU) + (u[i] == maxD);
                        if (q >= 3)
                                continue;
                        assert(q);

                        if (q == 1) {
                                if (l[i] == minR)
                                        add_disjunction(d[i] - 1, true, d[i] - 1, true),
                                        add_disjunction(u[i], false, u[i], false);
                                else if (r[i] == maxL)
                                        add_disjunction(2 * M + d[i] - 1, true, 2 * M + d[i] - 1, true),
                                        add_disjunction(2 * M + u[i], false, 2 * M + u[i], false);
                                else if (d[i] == minU)
                                        add_disjunction(3 * M + l[i] - 1, true, 3 * M + l[i] - 1, true), 
                                        add_disjunction(3 * M + r[i], false, 3 * M + r[i], false);
                                else  //u[i] == maxD
                                        add_disjunction(M + l[i] - 1, true, M + l[i] - 1, true),
                                        add_disjunction(M + r[i], false, M + r[i], false);
                        }
                        else {
                                if (l[i] == minR && r[i] == maxL)
                                        add_two(d[i], u[i], 2 * M + d[i], 2 * M + u[i]);
                                else if (l[i] == minR && d[i] == minU)
                                        add_two(d[i], u[i], 3 * M + l[i], 3 * M + r[i]);
                                else if (l[i] == minR && u[i] == maxD)
                                        add_two(d[i], u[i], M + l[i], M + r[i]);
                                else if (r[i] == maxL && d[i] == minU)
                                        add_two(2 * M + d[i], 2 * M + u[i], 3 * M + l[i], 3 * M + r[i]);
                                else if (r[i] == maxL && u[i] == maxD)
                                        add_two(2 * M + d[i], 2 * M + u[i], M + l[i], M + r[i]);
                                else if (d[i] == minU && u[i] == maxD) 
                                        add_two(3 * M + l[i], 3 * M + r[i], M + l[i], M + r[i]);
                        }
                }
                //init edges
                for (int j = 0; j < 4; j++)
                        for (int i = j * M; i < (j + 1) * M - 1; i++)
                                add_disjunction(i, true, i + 1, false);
                solve_2SAT();
                //cout << "SOLVED 2SAT\n";
                //exit(0);

                for (int i = 0; i < M; i++)
                        if (ass[i]) {
                                add_point(minR, i);
                                break;
                        }
                cout << "IMPOSSIBLE\n";
                exit(0);
        }
}


signed main() {
        ios::sync_with_stdio(0);
        cin.tie(0);

        cin >> n >> k;
        X.reserve(2 * n), Y.reserve(2 * n);
        X.push_back(-1), Y.push_back(-1);
        for (int i = 0; i < n; i++) {
                cin >> l[i] >> d[i] >> r[i] >> u[i];
                X.push_back(l[i]);
                X.push_back(r[i]);
                Y.push_back(d[i]);
                Y.push_back(u[i]);
        }
        sort(X.begin(), X.end());
        X.resize(unique(X.begin(), X.end()) - X.begin());

        sort(Y.begin(), Y.end());
        Y.resize(unique(Y.begin(), Y.end()) - Y.begin());

        for (int i = 0; i < n; i++) {
                l[i] = lower_bound(X.begin(), X.end(), l[i]) - X.begin();
                r[i] = lower_bound(X.begin(), X.end(), r[i]) - X.begin();

                u[i] = lower_bound(Y.begin(), Y.end(), u[i]) - Y.begin();
                d[i] = lower_bound(Y.begin(), Y.end(), d[i]) - Y.begin();
        }

        for (int i = 0; i < n; i++)
                used[i] = true;
        cnt = n;

        rec();
        cout << "NO I DID NOT FIND ANYTHING\n";
        return 0;
}

Compilation message

hamburg.cpp: In function 'void rec()':
hamburg.cpp:99:35: warning: comparison of integer expressions of different signedness: 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   99 |         if (!cnt && points.size() <= k) {
      |                     ~~~~~~~~~~~~~~^~~~
hamburg.cpp:106:27: warning: comparison of integer expressions of different signedness: 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
  106 |         if (points.size() >= k)
      |             ~~~~~~~~~~~~~~^~~~
# Verdict Execution time Memory Grader output
1 Correct 76 ms 150668 KB Output is correct
2 Correct 75 ms 150660 KB Output is correct
3 Correct 75 ms 150736 KB Output is correct
4 Correct 84 ms 150732 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 75 ms 150720 KB Output is correct
2 Correct 78 ms 150752 KB Output is correct
3 Correct 78 ms 150772 KB Output is correct
4 Correct 86 ms 150668 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 72 ms 150716 KB Output is correct
2 Correct 72 ms 150732 KB Output is correct
3 Correct 72 ms 150780 KB Output is correct
4 Correct 75 ms 150776 KB Output is correct
5 Correct 72 ms 150744 KB Output is correct
6 Correct 88 ms 150780 KB Output is correct
7 Correct 76 ms 150700 KB Output is correct
8 Correct 72 ms 150708 KB Output is correct
9 Correct 73 ms 150672 KB Output is correct
10 Correct 72 ms 150720 KB Output is correct
11 Correct 83 ms 150820 KB Output is correct
12 Correct 73 ms 150684 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 72 ms 150768 KB Output is correct
2 Correct 74 ms 150700 KB Output is correct
3 Correct 75 ms 150692 KB Output is correct
4 Correct 72 ms 150772 KB Output is correct
5 Correct 73 ms 150672 KB Output is correct
6 Correct 70 ms 150752 KB Output is correct
7 Correct 71 ms 150740 KB Output is correct
8 Correct 71 ms 150664 KB Output is correct
9 Correct 74 ms 150672 KB Output is correct
10 Correct 74 ms 150780 KB Output is correct
11 Correct 81 ms 150728 KB Output is correct
12 Correct 79 ms 150712 KB Output is correct
13 Correct 74 ms 150704 KB Output is correct
14 Incorrect 482 ms 402520 KB Expected integer, but "IMPOSSIBLE" found
15 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 76 ms 150668 KB Output is correct
2 Correct 75 ms 150660 KB Output is correct
3 Correct 75 ms 150736 KB Output is correct
4 Correct 84 ms 150732 KB Output is correct
5 Correct 331 ms 158724 KB Output is correct
6 Correct 361 ms 158728 KB Output is correct
7 Correct 350 ms 158764 KB Output is correct
8 Correct 343 ms 158812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 75 ms 150720 KB Output is correct
2 Correct 78 ms 150752 KB Output is correct
3 Correct 78 ms 150772 KB Output is correct
4 Correct 86 ms 150668 KB Output is correct
5 Correct 349 ms 158472 KB Output is correct
6 Correct 332 ms 158580 KB Output is correct
7 Correct 343 ms 158484 KB Output is correct
8 Correct 392 ms 158500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 72 ms 150716 KB Output is correct
2 Correct 72 ms 150732 KB Output is correct
3 Correct 72 ms 150780 KB Output is correct
4 Correct 75 ms 150776 KB Output is correct
5 Correct 72 ms 150744 KB Output is correct
6 Correct 88 ms 150780 KB Output is correct
7 Correct 76 ms 150700 KB Output is correct
8 Correct 72 ms 150708 KB Output is correct
9 Correct 73 ms 150672 KB Output is correct
10 Correct 72 ms 150720 KB Output is correct
11 Correct 83 ms 150820 KB Output is correct
12 Correct 73 ms 150684 KB Output is correct
13 Correct 354 ms 158412 KB Output is correct
14 Correct 345 ms 158608 KB Output is correct
15 Correct 335 ms 158472 KB Output is correct
16 Correct 346 ms 158488 KB Output is correct
17 Correct 344 ms 158436 KB Output is correct
18 Correct 329 ms 158596 KB Output is correct
19 Correct 338 ms 158432 KB Output is correct
20 Correct 379 ms 158456 KB Output is correct
21 Correct 491 ms 158404 KB Output is correct
22 Correct 425 ms 158476 KB Output is correct
23 Correct 369 ms 158440 KB Output is correct
24 Correct 362 ms 158436 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 72 ms 150768 KB Output is correct
2 Correct 74 ms 150700 KB Output is correct
3 Correct 75 ms 150692 KB Output is correct
4 Correct 72 ms 150772 KB Output is correct
5 Correct 73 ms 150672 KB Output is correct
6 Correct 70 ms 150752 KB Output is correct
7 Correct 71 ms 150740 KB Output is correct
8 Correct 71 ms 150664 KB Output is correct
9 Correct 74 ms 150672 KB Output is correct
10 Correct 74 ms 150780 KB Output is correct
11 Correct 81 ms 150728 KB Output is correct
12 Correct 79 ms 150712 KB Output is correct
13 Correct 74 ms 150704 KB Output is correct
14 Incorrect 482 ms 402520 KB Expected integer, but "IMPOSSIBLE" found
15 Halted 0 ms 0 KB -