답안 #648561

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
648561 2022-10-07T03:01:52 Z 406 함박 스테이크 (JOI20_hamburg) C++17
15 / 100
3000 ms 402432 KB
#include <bits/stdc++.h>
using namespace std;

#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")

const int N = 2e5 + 50;
const int M = 2 * N + 5;
int l[N], r[N], u[N], d[N], n, k;
bitset<N> used, full;
vector<pair<int, int>> points;
vector<int> X, Y;
int cnt;

void rec();

inline bool inter(int i, int x, int y) {
        return l[i] <= x && x <= r[i] && d[i] <= y && y <= u[i];
}

inline void add_point(int x, int y) {
        vector<int> change;
        for (int i = used._Find_first(); i < n; i = used._Find_next(i)) {
                if (inter(i, x, y)) {
                        cnt--;
                        used[i] = false;
                        change.push_back(i);
                }
        }
        if (change.empty())
                return;
        points.emplace_back(x, y);

        rec();

        for (auto cc: change) used[cc] = true, cnt++;
        points.pop_back();

}
const int V = 2 * 4 * M;
vector<int> adj[V], adj_t[V];
bitset<V> mark, ass;
vector<int> order;
int comp[V];

void dfs1(int v) {
        mark[v] = true;
        for (auto u: adj[v]) if (!mark[u])
                dfs1(u);
        order.push_back(v);
}

void dfs2(int v, int cl) {
        comp[v] = cl;
        for (auto u: adj_t[v]) {
                if (comp[u] == -1)
                        dfs2(u, cl);
        }
}
void solve_2SAT() {
        mark = 0;
        for (int i = 0; i < V; i++) if (!mark[i])
                dfs1(i);
        fill(comp, comp + V, -1);

        assert(order.size() == V);

        for (int i = 0, j = 0; i < V; i++) {
                int v = order[V - i - 1];
                if (comp[v] == -1)
                        dfs2(v, j++);
        }

        for (int i = 0; i < V; i += 2)
                ass[i / 2] = comp[i] > comp[i ^ 1];
}

void add_disjunction(int a, bool na, int b, bool nb) {
        a = 2 * a ^ na;
        b = 2 * b ^ nb;
        int neg_a = a ^ 1;
        int neg_b = b ^ 1;
        adj[neg_a].push_back(b);
        adj[neg_b].push_back(a);

        adj_t[b].push_back(neg_a);
        adj_t[a].push_back(neg_b);
}
void add_two(int a, int b, int c, int d) {
        assert(a > 0 && c > 0);
        a--, c--;
        add_disjunction(a, 1, c, 1);
        add_disjunction(a, 1, d, 0);
        add_disjunction(b, 1, c, 1);
        add_disjunction(b, 1, d, 0);
}

void rec() {
        if (!cnt && points.size() <= k) {
                for (int i = 0; i < (int) points.size(); i++)
                        cout << X[points[i].first] << ' ' << Y[points[i].second] << '\n';
                for (int i = points.size(); i < k; i++)
                        cout << 1 << ' ' << 1 << '\n';
                exit(0);
        }
        if (points.size() >= k)
                return;

        int minR = 2 * n;
        int minU = 2 * n;
        int maxD = 0;
        int maxL = 0;

        for (int i = used._Find_first(); i < n; i = used._Find_next(i)) {
                minR = min(minR, r[i]);
                maxL = max(maxL, l[i]);

                minU = min(minU, u[i]);
                maxD = max(maxD, d[i]);
        }

        if (maxL <= minR || maxD <= minU) {
                add_point(minR, minU);
        }
        else {
                add_point(minR, minU);
                add_point(minR, maxD);
                add_point(maxL, minU);
                add_point(maxL, maxD);
                if (points.size())
                        return;

                for (int i = 0; i < n; i++) {
                        l[i] = max(l[i], minR);
                        r[i] = min(r[i], maxL);
                        d[i] = max(d[i], minU);
                        u[i] = min(u[i], maxD);
                        int q = (l[i] == minR) + (r[i] == maxL) + (d[i] == minU) + (u[i] == maxD);
                        if (q >= 3)
                                continue;
                        assert(q);

                        if (q == 1) {
                                if (l[i] == minR)
                                        add_disjunction(d[i] - 1, true, d[i] - 1, true),
                                        add_disjunction(u[i], false, u[i], false);
                                else if (r[i] == maxL)
                                        add_disjunction(2 * M + d[i] - 1, true, 2 * M + d[i] - 1, true),
                                        add_disjunction(2 * M + u[i], false, 2 * M + u[i], false);
                                else if (d[i] == minU)
                                        add_disjunction(3 * M + l[i] - 1, true, 3 * M + l[i] - 1, true), 
                                        add_disjunction(3 * M + r[i], false, 3 * M + r[i], false);
                                else  //u[i] == maxD
                                        add_disjunction(M + l[i] - 1, true, M + l[i] - 1, true),
                                        add_disjunction(M + r[i], false, M + r[i], false);
                        }
                        else {
                                if (l[i] == minR && r[i] == maxL)
                                        add_two(d[i], u[i], 2 * M + d[i], 2 * M + u[i]);
                                else if (l[i] == minR && d[i] == minU)
                                        add_two(d[i], u[i], 3 * M + l[i], 3 * M + r[i]);
                                else if (l[i] == minR && u[i] == maxD)
                                        add_two(d[i], u[i], M + l[i], M + r[i]);
                                else if (r[i] == maxL && d[i] == minU)
                                        add_two(2 * M + d[i], 2 * M + u[i], 3 * M + l[i], 3 * M + r[i]);
                                else if (r[i] == maxL && u[i] == maxD)
                                        add_two(2 * M + d[i], 2 * M + u[i], M + l[i], M + r[i]);
                                else if (d[i] == minU && u[i] == maxD) 
                                        add_two(3 * M + l[i], 3 * M + r[i], M + l[i], M + r[i]);
                        }
                }
                //init edges
                for (int j = 0; j < 4; j++)
                        for (int i = j * M; i < (j + 1) * M - 1; i++)
                                add_disjunction(i, true, i + 1, false);
                solve_2SAT();

                for (int i = 0; i < M; i++)
                        if (ass[i])
                                add_point(minR, i);

        }
}


signed main() {
        ios::sync_with_stdio(0);
        cin.tie(0);

        cin >> n >> k;
        X.reserve(2 * n), Y.reserve(2 * n);
        X.push_back(-1), Y.push_back(-1);
        for (int i = 0; i < n; i++) {
                cin >> l[i] >> d[i] >> r[i] >> u[i];
                X.push_back(l[i]);
                X.push_back(r[i]);
                Y.push_back(d[i]);
                Y.push_back(u[i]);
        }
        sort(X.begin(), X.end());
        X.resize(unique(X.begin(), X.end()) - X.begin());

        sort(Y.begin(), Y.end());
        Y.resize(unique(Y.begin(), Y.end()) - Y.begin());

        for (int i = 0; i < n; i++) {
                l[i] = lower_bound(X.begin(), X.end(), l[i]) - X.begin();
                r[i] = lower_bound(X.begin(), X.end(), r[i]) - X.begin();

                u[i] = lower_bound(Y.begin(), Y.end(), u[i]) - Y.begin();
                d[i] = lower_bound(Y.begin(), Y.end(), d[i]) - Y.begin();
        }

        for (int i = 0; i < n; i++)
                used[i] = true;
        cnt = n;

        rec();
        cout << "NO I DID NOT FIND ANYTHING\n";
        return 0;
}

Compilation message

hamburg.cpp: In function 'void rec()':
hamburg.cpp:99:35: warning: comparison of integer expressions of different signedness: 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   99 |         if (!cnt && points.size() <= k) {
      |                     ~~~~~~~~~~~~~~^~~~
hamburg.cpp:106:27: warning: comparison of integer expressions of different signedness: 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
  106 |         if (points.size() >= k)
      |             ~~~~~~~~~~~~~~^~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 72 ms 150824 KB Output is correct
2 Correct 71 ms 150840 KB Output is correct
3 Correct 70 ms 150740 KB Output is correct
4 Correct 72 ms 150972 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 72 ms 150792 KB Output is correct
2 Correct 72 ms 150852 KB Output is correct
3 Correct 71 ms 150732 KB Output is correct
4 Correct 72 ms 150728 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 73 ms 150832 KB Output is correct
2 Correct 81 ms 150732 KB Output is correct
3 Correct 82 ms 150860 KB Output is correct
4 Correct 73 ms 150848 KB Output is correct
5 Correct 72 ms 150792 KB Output is correct
6 Correct 71 ms 150840 KB Output is correct
7 Correct 70 ms 150792 KB Output is correct
8 Correct 72 ms 150760 KB Output is correct
9 Correct 72 ms 150732 KB Output is correct
10 Correct 72 ms 150852 KB Output is correct
11 Correct 71 ms 150792 KB Output is correct
12 Correct 74 ms 150736 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 78 ms 150852 KB Output is correct
2 Correct 72 ms 150888 KB Output is correct
3 Correct 72 ms 150792 KB Output is correct
4 Correct 74 ms 150864 KB Output is correct
5 Correct 76 ms 150744 KB Output is correct
6 Correct 84 ms 150788 KB Output is correct
7 Correct 73 ms 150756 KB Output is correct
8 Correct 72 ms 150828 KB Output is correct
9 Correct 73 ms 150756 KB Output is correct
10 Correct 74 ms 150804 KB Output is correct
11 Correct 72 ms 150724 KB Output is correct
12 Correct 73 ms 150788 KB Output is correct
13 Correct 75 ms 150776 KB Output is correct
14 Execution timed out 3081 ms 402432 KB Time limit exceeded
15 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 72 ms 150824 KB Output is correct
2 Correct 71 ms 150840 KB Output is correct
3 Correct 70 ms 150740 KB Output is correct
4 Correct 72 ms 150972 KB Output is correct
5 Correct 331 ms 158688 KB Output is correct
6 Correct 332 ms 158840 KB Output is correct
7 Correct 338 ms 158676 KB Output is correct
8 Correct 327 ms 158868 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 72 ms 150792 KB Output is correct
2 Correct 72 ms 150852 KB Output is correct
3 Correct 71 ms 150732 KB Output is correct
4 Correct 72 ms 150728 KB Output is correct
5 Correct 334 ms 158588 KB Output is correct
6 Correct 331 ms 158600 KB Output is correct
7 Correct 369 ms 158596 KB Output is correct
8 Correct 339 ms 158556 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 73 ms 150832 KB Output is correct
2 Correct 81 ms 150732 KB Output is correct
3 Correct 82 ms 150860 KB Output is correct
4 Correct 73 ms 150848 KB Output is correct
5 Correct 72 ms 150792 KB Output is correct
6 Correct 71 ms 150840 KB Output is correct
7 Correct 70 ms 150792 KB Output is correct
8 Correct 72 ms 150760 KB Output is correct
9 Correct 72 ms 150732 KB Output is correct
10 Correct 72 ms 150852 KB Output is correct
11 Correct 71 ms 150792 KB Output is correct
12 Correct 74 ms 150736 KB Output is correct
13 Correct 363 ms 158424 KB Output is correct
14 Correct 336 ms 158472 KB Output is correct
15 Correct 339 ms 158480 KB Output is correct
16 Correct 334 ms 158480 KB Output is correct
17 Correct 345 ms 158412 KB Output is correct
18 Correct 331 ms 158632 KB Output is correct
19 Correct 342 ms 158416 KB Output is correct
20 Correct 347 ms 158412 KB Output is correct
21 Correct 431 ms 158540 KB Output is correct
22 Correct 368 ms 158488 KB Output is correct
23 Correct 370 ms 158448 KB Output is correct
24 Correct 379 ms 158432 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 78 ms 150852 KB Output is correct
2 Correct 72 ms 150888 KB Output is correct
3 Correct 72 ms 150792 KB Output is correct
4 Correct 74 ms 150864 KB Output is correct
5 Correct 76 ms 150744 KB Output is correct
6 Correct 84 ms 150788 KB Output is correct
7 Correct 73 ms 150756 KB Output is correct
8 Correct 72 ms 150828 KB Output is correct
9 Correct 73 ms 150756 KB Output is correct
10 Correct 74 ms 150804 KB Output is correct
11 Correct 72 ms 150724 KB Output is correct
12 Correct 73 ms 150788 KB Output is correct
13 Correct 75 ms 150776 KB Output is correct
14 Execution timed out 3081 ms 402432 KB Time limit exceeded
15 Halted 0 ms 0 KB -