/*
Subproblem:
Given a tree with N nodes, find the minimum number of edges in a path whose total length is exactly K and
it either ends at the root or pass through the root.
root
/ | \
.. c_i c_(i + 1)
After processing the first i children of the root, let's say we know the following:
minEdges[length] -> Minimum number of edges in a path of length "length" such that it originates from the root
and ends up at the subtree of the first i children of the root.
When processing the (i + 1)-th children, we can utilize that value. For example, we are at a node whose distance from
the root is d, then the answer we seek to minize is: depth + minEdges[K - d].
This problem can be solved in O(N) time.
To solve the full problem, we need to perform centroid decomposition. The total complexity will be O(N log(N))
*/
#include "race.h"
#include<bits/stdc++.h>
using namespace std;
#define INF 1000000000
#define MAXN 200000
#define MAXK 1000000
int n, k, sz[MAXN + 3];
vector<pair<int, int> > adj[MAXN + 3];
bool isDecomposed[MAXN + 3];
int minEdges[MAXK + 3];
int ans = INF;
void dfsSize(int u, int prev = -1) {
sz[u] = 1;
for (auto [v, cost]: adj[u]) {
if (v != prev && !isDecomposed[v]) {
dfsSize(v, u);
sz[u] += sz[v];
}
}
}
int doFindCentroid(int u, int subtreeSize, int prev = -1) {
for (auto [v, cost]: adj[u]) {
if (v != prev && !isDecomposed[v] && sz[v] * 2 > subtreeSize) {
return doFindCentroid(v, subtreeSize, u);
}
}
return u;
}
int findCentroid(int u) {
dfsSize(u);
return doFindCentroid(u, sz[u]);
}
void updateAnswer(int u, int prev, int currentDepth, int currentDist) {
if (k - currentDist >= 1 && k - currentDist <= k) {
ans = min(ans, currentDepth + minEdges[k - currentDist]);
}
for (auto [v, cost]: adj[u]) {
if (v != prev && !isDecomposed[v]) {
updateAnswer(v, u, currentDepth + 1, currentDist + cost);
}
}
}
void updateMinEdges(int u, int prev, int currentDepth, int currentDist) {
if (currentDist >= 1 && currentDist <= k) {
minEdges[currentDist] = min(minEdges[currentDist], currentDepth);
}
for (auto [v, cost]: adj[u]) {
if (v != prev && !isDecomposed[v]) {
updateMinEdges(v, u, currentDepth + 1, currentDist + cost);
}
}
}
void resetMinEdges(int u, int prev, int currentDist) {
if (currentDist >= 1 && currentDist <= k) {
minEdges[currentDist] = INF;
}
for (auto [v, cost]: adj[u]) {
if (v != prev && !isDecomposed[v]) {
resetMinEdges(v, u, currentDist + cost);
}
}
}
void centroidDecomposition(int u) {
int centroid = findCentroid(u);
isDecomposed[centroid] = true;
for (auto [v, cost]: adj[centroid]) {
if (!isDecomposed[v]) {
updateAnswer(v, centroid, 1, cost);
updateMinEdges(v, centroid, 1, cost);
}
}
// Handle paths that end at the centroid
ans = min(ans, minEdges[k]);
for (auto [v, cost]: adj[centroid]) {
if (!isDecomposed[v]) {
resetMinEdges(v, centroid, cost);
}
}
for (auto [v, cost]: adj[centroid]) {
if (!isDecomposed[v]) {
centroidDecomposition(v);
}
}
}
int best_path(int N, int K, int H[][2], int L[]) {
n = N;
k = K;
for (int i = 0; i < n - 1; i++) {
adj[H[i][0]].push_back({H[i][1], L[i]});
adj[H[i][1]].push_back({H[i][0], L[i]});
}
memset(isDecomposed, false, sizeof(isDecomposed));
minEdges[0] = 0;
for (int i = 1; i <= k; i++) {
minEdges[i] = INF;
}
centroidDecomposition(0);
if (ans < INF) {
return ans;
} else {
return -1;
}
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
5204 KB |
Output is correct |
2 |
Correct |
4 ms |
5204 KB |
Output is correct |
3 |
Correct |
3 ms |
5204 KB |
Output is correct |
4 |
Correct |
3 ms |
5204 KB |
Output is correct |
5 |
Correct |
4 ms |
5204 KB |
Output is correct |
6 |
Correct |
3 ms |
5204 KB |
Output is correct |
7 |
Correct |
3 ms |
5204 KB |
Output is correct |
8 |
Correct |
3 ms |
5204 KB |
Output is correct |
9 |
Correct |
4 ms |
5204 KB |
Output is correct |
10 |
Correct |
3 ms |
5204 KB |
Output is correct |
11 |
Correct |
3 ms |
5204 KB |
Output is correct |
12 |
Correct |
4 ms |
5204 KB |
Output is correct |
13 |
Correct |
4 ms |
5204 KB |
Output is correct |
14 |
Correct |
3 ms |
5204 KB |
Output is correct |
15 |
Correct |
3 ms |
5204 KB |
Output is correct |
16 |
Correct |
4 ms |
5204 KB |
Output is correct |
17 |
Correct |
4 ms |
5204 KB |
Output is correct |
18 |
Correct |
4 ms |
5204 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
5204 KB |
Output is correct |
2 |
Correct |
4 ms |
5204 KB |
Output is correct |
3 |
Correct |
3 ms |
5204 KB |
Output is correct |
4 |
Correct |
3 ms |
5204 KB |
Output is correct |
5 |
Correct |
4 ms |
5204 KB |
Output is correct |
6 |
Correct |
3 ms |
5204 KB |
Output is correct |
7 |
Correct |
3 ms |
5204 KB |
Output is correct |
8 |
Correct |
3 ms |
5204 KB |
Output is correct |
9 |
Correct |
4 ms |
5204 KB |
Output is correct |
10 |
Correct |
3 ms |
5204 KB |
Output is correct |
11 |
Correct |
3 ms |
5204 KB |
Output is correct |
12 |
Correct |
4 ms |
5204 KB |
Output is correct |
13 |
Correct |
4 ms |
5204 KB |
Output is correct |
14 |
Correct |
3 ms |
5204 KB |
Output is correct |
15 |
Correct |
3 ms |
5204 KB |
Output is correct |
16 |
Correct |
4 ms |
5204 KB |
Output is correct |
17 |
Correct |
4 ms |
5204 KB |
Output is correct |
18 |
Correct |
4 ms |
5204 KB |
Output is correct |
19 |
Correct |
4 ms |
5204 KB |
Output is correct |
20 |
Correct |
3 ms |
5204 KB |
Output is correct |
21 |
Correct |
3 ms |
5204 KB |
Output is correct |
22 |
Correct |
5 ms |
8788 KB |
Output is correct |
23 |
Correct |
6 ms |
8148 KB |
Output is correct |
24 |
Correct |
5 ms |
8660 KB |
Output is correct |
25 |
Correct |
6 ms |
8532 KB |
Output is correct |
26 |
Correct |
4 ms |
6580 KB |
Output is correct |
27 |
Correct |
5 ms |
8404 KB |
Output is correct |
28 |
Correct |
4 ms |
5972 KB |
Output is correct |
29 |
Correct |
4 ms |
6484 KB |
Output is correct |
30 |
Correct |
4 ms |
6712 KB |
Output is correct |
31 |
Correct |
6 ms |
7764 KB |
Output is correct |
32 |
Correct |
5 ms |
8020 KB |
Output is correct |
33 |
Correct |
5 ms |
8276 KB |
Output is correct |
34 |
Correct |
5 ms |
7508 KB |
Output is correct |
35 |
Correct |
5 ms |
8404 KB |
Output is correct |
36 |
Correct |
6 ms |
8916 KB |
Output is correct |
37 |
Correct |
5 ms |
8392 KB |
Output is correct |
38 |
Correct |
4 ms |
7252 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
5204 KB |
Output is correct |
2 |
Correct |
4 ms |
5204 KB |
Output is correct |
3 |
Correct |
3 ms |
5204 KB |
Output is correct |
4 |
Correct |
3 ms |
5204 KB |
Output is correct |
5 |
Correct |
4 ms |
5204 KB |
Output is correct |
6 |
Correct |
3 ms |
5204 KB |
Output is correct |
7 |
Correct |
3 ms |
5204 KB |
Output is correct |
8 |
Correct |
3 ms |
5204 KB |
Output is correct |
9 |
Correct |
4 ms |
5204 KB |
Output is correct |
10 |
Correct |
3 ms |
5204 KB |
Output is correct |
11 |
Correct |
3 ms |
5204 KB |
Output is correct |
12 |
Correct |
4 ms |
5204 KB |
Output is correct |
13 |
Correct |
4 ms |
5204 KB |
Output is correct |
14 |
Correct |
3 ms |
5204 KB |
Output is correct |
15 |
Correct |
3 ms |
5204 KB |
Output is correct |
16 |
Correct |
4 ms |
5204 KB |
Output is correct |
17 |
Correct |
4 ms |
5204 KB |
Output is correct |
18 |
Correct |
4 ms |
5204 KB |
Output is correct |
19 |
Correct |
156 ms |
10428 KB |
Output is correct |
20 |
Correct |
150 ms |
11784 KB |
Output is correct |
21 |
Correct |
146 ms |
11700 KB |
Output is correct |
22 |
Correct |
129 ms |
11892 KB |
Output is correct |
23 |
Correct |
118 ms |
12084 KB |
Output is correct |
24 |
Correct |
61 ms |
12016 KB |
Output is correct |
25 |
Correct |
162 ms |
15380 KB |
Output is correct |
26 |
Correct |
102 ms |
19072 KB |
Output is correct |
27 |
Correct |
195 ms |
18792 KB |
Output is correct |
28 |
Correct |
420 ms |
33256 KB |
Output is correct |
29 |
Correct |
493 ms |
32128 KB |
Output is correct |
30 |
Correct |
191 ms |
18752 KB |
Output is correct |
31 |
Correct |
191 ms |
18912 KB |
Output is correct |
32 |
Correct |
293 ms |
18912 KB |
Output is correct |
33 |
Correct |
287 ms |
17612 KB |
Output is correct |
34 |
Correct |
301 ms |
18584 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
5204 KB |
Output is correct |
2 |
Correct |
4 ms |
5204 KB |
Output is correct |
3 |
Correct |
3 ms |
5204 KB |
Output is correct |
4 |
Correct |
3 ms |
5204 KB |
Output is correct |
5 |
Correct |
4 ms |
5204 KB |
Output is correct |
6 |
Correct |
3 ms |
5204 KB |
Output is correct |
7 |
Correct |
3 ms |
5204 KB |
Output is correct |
8 |
Correct |
3 ms |
5204 KB |
Output is correct |
9 |
Correct |
4 ms |
5204 KB |
Output is correct |
10 |
Correct |
3 ms |
5204 KB |
Output is correct |
11 |
Correct |
3 ms |
5204 KB |
Output is correct |
12 |
Correct |
4 ms |
5204 KB |
Output is correct |
13 |
Correct |
4 ms |
5204 KB |
Output is correct |
14 |
Correct |
3 ms |
5204 KB |
Output is correct |
15 |
Correct |
3 ms |
5204 KB |
Output is correct |
16 |
Correct |
4 ms |
5204 KB |
Output is correct |
17 |
Correct |
4 ms |
5204 KB |
Output is correct |
18 |
Correct |
4 ms |
5204 KB |
Output is correct |
19 |
Correct |
4 ms |
5204 KB |
Output is correct |
20 |
Correct |
3 ms |
5204 KB |
Output is correct |
21 |
Correct |
3 ms |
5204 KB |
Output is correct |
22 |
Correct |
5 ms |
8788 KB |
Output is correct |
23 |
Correct |
6 ms |
8148 KB |
Output is correct |
24 |
Correct |
5 ms |
8660 KB |
Output is correct |
25 |
Correct |
6 ms |
8532 KB |
Output is correct |
26 |
Correct |
4 ms |
6580 KB |
Output is correct |
27 |
Correct |
5 ms |
8404 KB |
Output is correct |
28 |
Correct |
4 ms |
5972 KB |
Output is correct |
29 |
Correct |
4 ms |
6484 KB |
Output is correct |
30 |
Correct |
4 ms |
6712 KB |
Output is correct |
31 |
Correct |
6 ms |
7764 KB |
Output is correct |
32 |
Correct |
5 ms |
8020 KB |
Output is correct |
33 |
Correct |
5 ms |
8276 KB |
Output is correct |
34 |
Correct |
5 ms |
7508 KB |
Output is correct |
35 |
Correct |
5 ms |
8404 KB |
Output is correct |
36 |
Correct |
6 ms |
8916 KB |
Output is correct |
37 |
Correct |
5 ms |
8392 KB |
Output is correct |
38 |
Correct |
4 ms |
7252 KB |
Output is correct |
39 |
Correct |
156 ms |
10428 KB |
Output is correct |
40 |
Correct |
150 ms |
11784 KB |
Output is correct |
41 |
Correct |
146 ms |
11700 KB |
Output is correct |
42 |
Correct |
129 ms |
11892 KB |
Output is correct |
43 |
Correct |
118 ms |
12084 KB |
Output is correct |
44 |
Correct |
61 ms |
12016 KB |
Output is correct |
45 |
Correct |
162 ms |
15380 KB |
Output is correct |
46 |
Correct |
102 ms |
19072 KB |
Output is correct |
47 |
Correct |
195 ms |
18792 KB |
Output is correct |
48 |
Correct |
420 ms |
33256 KB |
Output is correct |
49 |
Correct |
493 ms |
32128 KB |
Output is correct |
50 |
Correct |
191 ms |
18752 KB |
Output is correct |
51 |
Correct |
191 ms |
18912 KB |
Output is correct |
52 |
Correct |
293 ms |
18912 KB |
Output is correct |
53 |
Correct |
287 ms |
17612 KB |
Output is correct |
54 |
Correct |
301 ms |
18584 KB |
Output is correct |
55 |
Correct |
11 ms |
5844 KB |
Output is correct |
56 |
Correct |
13 ms |
5844 KB |
Output is correct |
57 |
Correct |
81 ms |
12008 KB |
Output is correct |
58 |
Correct |
34 ms |
11692 KB |
Output is correct |
59 |
Correct |
94 ms |
19796 KB |
Output is correct |
60 |
Correct |
482 ms |
36216 KB |
Output is correct |
61 |
Correct |
207 ms |
18968 KB |
Output is correct |
62 |
Correct |
206 ms |
22788 KB |
Output is correct |
63 |
Correct |
258 ms |
22860 KB |
Output is correct |
64 |
Correct |
519 ms |
21256 KB |
Output is correct |
65 |
Correct |
346 ms |
19764 KB |
Output is correct |
66 |
Correct |
529 ms |
33612 KB |
Output is correct |
67 |
Correct |
106 ms |
23324 KB |
Output is correct |
68 |
Correct |
261 ms |
23516 KB |
Output is correct |
69 |
Correct |
272 ms |
23580 KB |
Output is correct |
70 |
Correct |
235 ms |
22860 KB |
Output is correct |