제출 #646945

#제출 시각아이디문제언어결과실행 시간메모리
646945Lemur95Sum Zero (RMI20_sumzero)C++17
100 / 100
578 ms18288 KiB
#include <iostream> #include <fstream> #include <algorithm> #include <cmath> #include <vector> #include <map> #include <unordered_map> #include <set> #include <cstring> #include <chrono> #include <cassert> #include <bitset> #include <stack> #include <queue> #include <iomanip> #include <random> #ifdef _MSC_VER # include <intrin.h> # define __builtin_popcount __popcnt # define __builtin_popcountll __popcnt64 #endif //#pragma GCC optimize("Ofast") #pragma GCC optimize("Ofast") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define x first #define y second #define ld long double #define ll long long #define ull unsigned long long #define us unsigned short #define lsb(x) ((x) & (-(x))) #define pii pair <int, int> #define pll pair <ll, ll> using namespace std; mt19937 gen(time(0)); uniform_int_distribution <uint32_t> rng; //ifstream in("test.in"); //ofstream out("test.out"); const int MOD = 998244353; // the following namespace includes many useful things // for solving linear recurrences namespace recurrences { // binary exponentiation template <int MOD> int lgput(int n, int p) { int ans = 1, x = n; while (p) { if (p & 1) ans = 1LL * ans * x % MOD; x = 1LL * x * x % MOD; p >>= 1; } return ans; } // modular integer class template <int MOD> struct Int { int x; Int() { x = 0; } Int(int _x) { if (_x < 0) _x += MOD; if (_x >= MOD) _x -= MOD; x = _x; } friend ostream& operator << (ostream& os, const Int& X) { os << (false ? X.x - MOD : X.x); return os; } Int operator + (const Int& other) const { int val = x + other.x; return (val >= MOD ? val - MOD : val); } Int operator += (const Int& other) { return *this = *this + other; } Int operator - (const Int& other) const { int val = x - other.x; return (val < 0 ? val + MOD : val); } Int operator -= (const Int& other) { return *this = *this - other; } Int operator * (const Int& other) const { return 1LL * x * other.x % MOD; } Int operator *= (const Int& other) { return *this = *this * other; } Int operator / (const Int& other) const { return 1LL * x * other.inv() % MOD; } bool operator == (const Int& other) const { return x == other.x; } bool operator != (const Int& other) const { return x != other.x; } Int pow(int p) const { return lgput<MOD>(x, p); } int inv() const { return lgput<MOD>(x, MOD - 2); } }; const bool slow_mult = false; int get_primitive_root(int p) { vector<int> fact; int phi = p - 1, n = phi; for (int i = 2; i * i <= n; ++i) if (n % i == 0) { fact.push_back(i); while (n % i == 0) n /= i; } if (n > 1) fact.push_back(n); for (int res = 2; res <= p; ++res) { bool ok = true; for (size_t i = 0; i < fact.size() && ok; ++i) ok &= lgput<MOD>(res, phi / fact[i]) != 1; if (ok) { return res; } } return -1; } int primitive_root = get_primitive_root(MOD); int get_smallest_power(int n) { int p = 1; while (p < n) p <<= 1; return p; } bool calcW = true; Int<MOD> valw[30], invvalw[30]; // modular template <typename T> struct Poly { vector <T> p; Poly() { p.clear(); } Poly(vector <T> values) { p = values; } Poly(int val) { p = { val }; } T& operator [] (int index) { assert(index < (int)p.size()); return p[index]; } void setDegree(int deg) { p.resize(deg + 1); } int deg() const { return p.size() - 1; } friend ostream& operator << (ostream& os, const Poly& P) { for (auto& i : P.p) os << i << " "; return os; } bool operator == (const Poly& other) const { if (deg() != other.deg()) return 0; for (int i = 0; i <= deg(); i++) { if (p[i] != other.p[i]) return 0; } return 1; } Poly operator + (const Poly& other) const { Poly sum(p); sum.setDegree(max(deg(), other.deg())); for (int i = 0; i <= other.deg(); i++) sum[i] += other.p[i]; return sum; } // add Poly operator += (const Poly& other) { return *this = *this + other; } Poly operator - (const Poly& other) const { Poly dif(p); dif.setDegree(max(deg(), other.deg())); for (int i = 0; i <= other.deg(); i++) dif[i] -= other.p[i]; return dif; } // substract Poly operator -= (const Poly& other) { return *this = *this - other; } // scalar multiplication Poly operator * (const T& other) const { Poly mult(*this); for (auto& i : mult.p) i *= other; return mult; } // scalar multiplication Poly operator *= (const T& other) { return *this = *this * other; } // scalar division Poly operator / (const T& other) const { Poly mult(*this); Int<MOD> val = other.inv(); for (auto& i : mult.p) i *= val; return mult; } // scalar division Poly operator /= (const T& other) { return *this = *this / other; } Poly fft(bool invert) { Poly Ans(p); Int<MOD> root(primitive_root); if (calcW) { calcW = false; for (int i = 0; i < 30; i++) { valw[i] = root.pow((MOD - 1) >> (i + 1)); invvalw[i] = valw[i].inv(); } } int ind = 0, n = deg(); for (int i = 1; i < n; i++) { int b; for (b = n / 2; ind & b; b >>= 1) ind ^= b; ind ^= b; if (i < ind) swap(Ans[i], Ans[ind]); } for (int l = 2, p = 0; l <= n; l <<= 1, p++) { Int<MOD> bw(!invert ? valw[p] : invvalw[p]); for (int i = 0; i < n; i += l) { Int<MOD> w(1); for (int j = 0; j < l / 2; j++) { int i1 = i + j, i2 = i + j + l / 2; Int<MOD> val1(Ans[i1]), val2(Ans[i2] * w); Ans[i1] = val1 + val2; Ans[i2] = val1 - val2; w *= bw; } } } if (invert) { Int<MOD> inv = Int<MOD>(n).inv(); for (int i = 0; i < n; i++) Ans[i] *= inv; } return Ans; } // multiplies 2 polynomials Poly operator * (const Poly& other) const { if (!primitive_root) { // for small sizes, use naive multiplication Poly mult; mult.setDegree(deg() + other.deg()); for (int i = 0; i <= deg(); i++) { for (int j = 0; j <= other.deg(); j++) mult[i + j] += p[i] * other.p[j]; } return mult; } Poly A(p), B(other.p); int sz = max(get_smallest_power(A.deg() + 1), get_smallest_power(B.deg() + 1)) * 2; A.setDegree(sz), B.setDegree(sz); A = A.fft(0); B = B.fft(0); for (int i = 0; i < sz; i++) A[i] *= B[i]; A = A.fft(1); A.setDegree(deg() + other.deg()); return A; } // p mod q Poly operator % (const Poly& other) const { int d = deg() - other.deg(); if (d < 0) return *this; if (false) { Poly R2(p); for (int i = deg(); i >= other.deg(); i--) { R2 -= (other * R2[i] / other.p[other.deg()]).shift(i - other.deg()); } R2.setDegree(other.deg() - 1); //return R; } Poly A, B = other; for (int i = 0; i <= d; i++) { A.p.push_back(p[deg() - i]); } for (int i = 0; i <= B.deg() / 2; i++) swap(B[i], B[B.deg() - i]); Poly C = A * B.inverse(d); C.setDegree(d); for (int i = 0; i <= d / 2; i++) swap(C[i], C[d - i]); Poly R = *this - other * C; R.setDegree(other.deg() - 1); return R; } // *x^n Poly shift(int index) { Poly q = p; q.setDegree(deg() + index); for (int i = deg(); i >= 0; i--) q[i + index] = q[i]; for (int i = index - 1; i >= 0; i--) q[i] = T(0); return q; } // derivate of P Poly derivative() { Poly D; D.setDegree(deg() - 1); for (int i = 1; i <= deg(); i++) D[i - 1] = T(i) * p[i]; return D; } // integral of P Poly integral() { Poly I; I.setDegree(deg() + 1); for (int i = 0; i <= deg(); i++) I[i + 1] = p[i] / T(i + 1); return I; } // P^-1 mod x^n Poly inverse(int n) { Poly Inv(p[0].inv()), two(2); int power = 1; while ((power / 2) <= n) { Poly A; for (int i = 0; i <= power; i++) A.p.push_back((i <= deg() ? p[i] : 0)); Inv = Inv * (two - A * Inv); Inv.setDegree(power); power <<= 1; } Inv.setDegree(n); return Inv; } // log(P) mod x^n Poly log(int n) { Poly Log(derivative()); Log = Log * this->inverse(n); return Log.integral(); } // e^P mod x^n Poly exp(int n) { Poly Exp(1); int power = 1; while ((power / 2) <= n) { Poly A(p); A.setDegree(power); Exp += Exp * A - Exp * Exp.log(power); Exp.setDegree(power); power <<= 1; } Exp.setDegree(n); return Exp; } // p^power mod mod, where mod is a polynomial Poly pow(uint64_t power, Poly mod) { Poly Pow(1), X(p); while (power) { if (power & 1) Pow = Pow * X % mod; X = X * X % mod; power >>= 1; } return Pow; } Poly pow(uint64_t power) { Poly Pow(1), X(p); while (power) { if (power & 1) Pow = Pow * X; X = X * X; power >>= 1; } return Pow; } }; // berlekamp-massey algorithm template <int MOD> Poly<Int<MOD>> berlekamp_massey(vector <Int<MOD>> values) { Poly<Int<MOD>> P(values), B, C, Pol(-1); int n = values.size(), lst = -1; Int<MOD> lstError; for (int i = 0; i < n; i++) { Int<MOD> error = P[i]; for (int j = 1; j <= C.deg() + 1; j++) error -= C[j - 1] * P[i - j]; if (error == Int<MOD>(0)) continue; if (lst == -1) { C = C.shift(i + 1); lst = i; lstError = P[i]; continue; } Poly<Int<MOD>> D = (Pol * error / lstError); Poly<Int<MOD>> t = C; // instead of shifting D with i - lst - 1 positions // do the substraction on the last D.deg() coeficients if (i - lst - 1 + D.deg() > C.deg()) C.setDegree(i - lst - 1 + D.deg()); for (int j = 0; j <= D.deg(); j++) C[j + i - lst - 1] -= D[j]; if (i - t.deg() > lst - B.deg()) { B = t; Pol = B; Pol = Pol.shift(1); Pol[0] = Int<MOD>(-1); lst = i; lstError = error; } //C -= D; } return C; } // find kth term based on terms of recurrence // assuming first term has index 1 template <int MOD> Int<MOD> kth_term(vector <Int<MOD>> v, uint64_t k) { vector <Int<MOD>> x = { Int<MOD>(0), Int<MOD>(1) }; Poly<Int<MOD>> CP = berlekamp_massey<MOD>(v); Poly<Int<MOD>> X(x); // characteristic polynomial is of form // x^n - sigma(i = 1..n, c[i] * x^(n-i)) // that's why we need to reverse the recurrence // from berlekamp-massey CP *= Int<MOD>(-1); CP = CP.shift(1); for (int i = 0; i <= CP.deg() / 2; i++) swap(CP[i], CP[CP.deg() - i]); CP[CP.deg()] = 1; X = X.pow(k - 1, CP); Int<MOD> term(0); for (int i = 0; i <= X.deg(); i++) term += X[i] * v[i]; return term; } template <int MOD> void berlekamp_massey_test() { int n; vector<Int<MOD>> v; cin >> n; for (int i = 0; i < n; i++) { int x; cin >> x; v.push_back(x); } Poly<Int<MOD>> rec = berlekamp_massey<MOD>(v); // sanity check for (int k = rec.deg() + 2; k <= 30; k++) { Int<MOD> val(0); for (int i = k - rec.deg() - 1; i < k; i++) val += v[i - 1] * rec[k - 1 - i]; assert(val == kth_term(v, k)); if (k > n) v.push_back(val); } uint64_t k; cin >> k; cout << kth_term<MOD>(v, k) << "\n"; } template <int MOD> void berlekamp_massey_speed_test() { int n; vector<Int<MOD>> v; n = 1000; for (int i = 0; i < n; i++) { int x; //cin >> x; x = rng(gen); v.push_back(x); } ld t1 = clock(); for (int k = 1; k <= 200; k++) kth_term<MOD>(v, k); ld t2 = clock(); cout << (t2 - t1) / CLOCKS_PER_SEC << "s\n"; } template <int MOD> void inverse_test() { int n; cin >> n; vector <Int<MOD>> v; for (int i = 1; i <= n; i++) { int x; cin >> x; v.push_back(Int<MOD>(x)); } Poly<Int<MOD>> P(v), Inv, Exp, Log; int deg = 10; Inv = P.inverse(deg); cout << "Inverse: " << Inv << "\n"; Exp = P.exp(deg); cout << "Exponential: " << Exp << "\n"; Log = P.log(deg); cout << "Logarithm: " << Log << '\n'; } }; int T; template <typename T> T gcd(T a, T b) { if (!a) return b; return gcd<T>(b % a, a); } using namespace recurrences; ifstream in("popcorn.in"); ofstream out("popcorn.out"); const int K = (int)1e6 + 5; int n, q, x; pair <ll, int> s[400005]; int l[6][400005], put[6]; void solve(int test) { cin >> n; put[0] = 1; for (int i = 1; i <= 5; i++) put[i] = put[i - 1] * 10; l[0][0] = -1; for (int i = 1; i <= n; i++) { cin >> x; l[0][i] = -1; s[i].x = s[i - 1].x + x; s[i].y = i; } sort(s, s + n + 1); for (int i = 1; i <= n; i++) { if (s[i - 1].x == s[i].x) l[0][s[i].y] = s[i - 1].y; } for(int i = 2; i <= n; i++) { l[0][i] = max(l[0][i], l[0][i - 1]); } for (int i = 1; i <= 5; i++) { l[i][0] = -1; for (int j = 1; j <= n; j++) { int x = l[i - 1][j]; for (int k = 0; k < 9; k++) x = (x >= 0 ? l[i - 1][x] : -1); l[i][j] = x; } } cin >> q; for (; q; q--) { int x, y; cin >> x >> y; x--; int ans = 0; for (int i = 5; i >= 0; i--) { for (int k = 0; k < 9; k++) { if (y >= 0 && l[i][y] >= x) ans += put[i], y = l[i][y]; } } cout << ans << "\n"; } } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); srand(time(0)); T = 1; //cin >> T; for (int t = 1; t <= T; t++) { solve(t); } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...