제출 #645902

#제출 시각아이디문제언어결과실행 시간메모리
645902ateacodeKnapsack (NOI18_knapsack)Java
37 / 100
1043 ms11512 KiB
import java.util.Arrays; import java.util.Scanner; class knapsack { public static void main(String[] args) { // maximal weight of S kg's // n items to choose from, each with a value v and quantity q. // complete search problem // two decisions for each item: 1. Put item in basket 2. Ignore item. Goal is to maximise value. // Suppose we know the maximum value for the subset of items n[0..i] // We can figure out max value of subset of items n[0..i+1] because for the marginal // decision (do i put item i + 1 in basket), we can update the max value given the optimal decision. Scanner in = new Scanner(System.in); int maxWeight = in.nextInt(); int numItems = in.nextInt(); int[] values = new int[numItems]; int[] weights = new int[numItems]; int[] quantities = new int[numItems]; for(int i = 0; i < numItems; ++i) { values[i] = in.nextInt(); weights[i] = in.nextInt(); quantities[i] = in.nextInt(); } int[] maxValueGivenWeight = new int[maxWeight + 1]; for(int i = 0; i < numItems; ++i) { for(int q = 0; q < quantities[i]; ++q) { // consider the subset of items from 0..i for(int curWeight = maxWeight; curWeight >= 0; --curWeight) { if(weights[i] <= curWeight) { maxValueGivenWeight[curWeight] = Math.max( maxValueGivenWeight[curWeight], values[i] + maxValueGivenWeight[curWeight - weights[i]] ); } } } } System.out.println(maxValueGivenWeight[maxWeight]); } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...