/*
sort by b from small to large
optimal construction can be split into two halves
- on the left, all the things are taken
- on the right, only a's are taken
fix the number of b's, let this be t
f(i,j) = min time to use prefix i with j b's
f(i,j) = min(f(i-1,j) + a[i] / t, f(i-1,j-1) + b[i] / t)
now for the suffixes, we need to pick k-i a's at the end,
we must pick the ones with the least a[j] value. this part
can be done in O(n log^2 n)
overall the time complexity is O(n^3)
*/
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 0
#endif
const int N = 505;
const double INF = 1e15;
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
int n, k;
cin >> n >> k;
static array<int, 2> p[N];
for (int i = 0; i < n; i++) {
int a, b;
cin >> a >> b;
if (b == -1)
b = 1e9;
p[i] = {b, a};
}
sort(p, p + n);
static int g[N][N];
for (int i = 0; i < n; i++) {
vector<int> t;
for (int j = i; j < n; j++)
t.push_back(p[j][1]);
sort(t.begin(), t.end());
g[i][0] = 0;
for (int j = 1; j <= (int) t.size(); j++)
g[i][j] = g[i][j - 1] + t[j - 1];
}
double ans = INF;
for (int t = 0; t <= k; t++) {
static double f[N];
for (int i = 0; i <= k; i++)
f[i] = INF;
f[0] = 0;
for (int i = 0; i < n; i++) {
for (int j = k; j >= 0; j--)
f[j] = min(f[j] + (double) p[i][1] / (t + 1), j == 0 ? INF : f[j - 1] + (double) p[i][0] / j);
if (k - i - 1 >= 0)
ans = min(ans, f[t] + (double) g[i + 1][k - i - 1] / (t + 1));
}
}
cout << fixed << setprecision(12) << ans << '\n';
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
332 KB |
Output is correct |
2 |
Correct |
0 ms |
340 KB |
Output is correct |
3 |
Correct |
1 ms |
212 KB |
Output is correct |
4 |
Correct |
1 ms |
212 KB |
Output is correct |
5 |
Correct |
5 ms |
1236 KB |
Output is correct |
6 |
Correct |
18 ms |
1224 KB |
Output is correct |
7 |
Correct |
63 ms |
1276 KB |
Output is correct |
8 |
Correct |
135 ms |
1236 KB |
Output is correct |
9 |
Correct |
247 ms |
1304 KB |
Output is correct |
10 |
Correct |
120 ms |
1304 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
332 KB |
Output is correct |
2 |
Correct |
0 ms |
340 KB |
Output is correct |
3 |
Correct |
1 ms |
212 KB |
Output is correct |
4 |
Correct |
1 ms |
212 KB |
Output is correct |
5 |
Correct |
5 ms |
1236 KB |
Output is correct |
6 |
Correct |
18 ms |
1224 KB |
Output is correct |
7 |
Correct |
63 ms |
1276 KB |
Output is correct |
8 |
Correct |
135 ms |
1236 KB |
Output is correct |
9 |
Correct |
247 ms |
1304 KB |
Output is correct |
10 |
Correct |
120 ms |
1304 KB |
Output is correct |
11 |
Correct |
1 ms |
212 KB |
Output is correct |
12 |
Correct |
24 ms |
1236 KB |
Output is correct |
13 |
Correct |
25 ms |
1324 KB |
Output is correct |
14 |
Correct |
25 ms |
1228 KB |
Output is correct |
15 |
Correct |
131 ms |
1308 KB |
Output is correct |
16 |
Correct |
123 ms |
1236 KB |
Output is correct |
17 |
Correct |
120 ms |
1308 KB |
Output is correct |
18 |
Correct |
250 ms |
1236 KB |
Output is correct |
19 |
Correct |
245 ms |
1304 KB |
Output is correct |
20 |
Correct |
242 ms |
1304 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
1 ms |
348 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
1 ms |
348 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
1 ms |
348 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
246 ms |
1316 KB |
Output is correct |
2 |
Correct |
254 ms |
1236 KB |
Output is correct |
3 |
Correct |
247 ms |
1308 KB |
Output is correct |
4 |
Correct |
246 ms |
1312 KB |
Output is correct |
5 |
Correct |
242 ms |
1236 KB |
Output is correct |
6 |
Correct |
244 ms |
1308 KB |
Output is correct |
7 |
Correct |
250 ms |
1236 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
332 KB |
Output is correct |
2 |
Correct |
0 ms |
340 KB |
Output is correct |
3 |
Correct |
1 ms |
212 KB |
Output is correct |
4 |
Correct |
1 ms |
212 KB |
Output is correct |
5 |
Correct |
5 ms |
1236 KB |
Output is correct |
6 |
Correct |
18 ms |
1224 KB |
Output is correct |
7 |
Correct |
63 ms |
1276 KB |
Output is correct |
8 |
Correct |
135 ms |
1236 KB |
Output is correct |
9 |
Correct |
247 ms |
1304 KB |
Output is correct |
10 |
Correct |
120 ms |
1304 KB |
Output is correct |
11 |
Correct |
1 ms |
212 KB |
Output is correct |
12 |
Correct |
24 ms |
1236 KB |
Output is correct |
13 |
Correct |
25 ms |
1324 KB |
Output is correct |
14 |
Correct |
25 ms |
1228 KB |
Output is correct |
15 |
Correct |
131 ms |
1308 KB |
Output is correct |
16 |
Correct |
123 ms |
1236 KB |
Output is correct |
17 |
Correct |
120 ms |
1308 KB |
Output is correct |
18 |
Correct |
250 ms |
1236 KB |
Output is correct |
19 |
Correct |
245 ms |
1304 KB |
Output is correct |
20 |
Correct |
242 ms |
1304 KB |
Output is correct |
21 |
Incorrect |
1 ms |
348 KB |
Output isn't correct |
22 |
Halted |
0 ms |
0 KB |
- |