Submission #642867

# Submission time Handle Problem Language Result Execution time Memory
642867 2022-09-20T16:59:48 Z Tenis0206 Paths (RMI21_paths) C++11
100 / 100
572 ms 49700 KB
#include <bits/stdc++.h>
#define int long long

using namespace std;

struct Node
{
    Node *st, *dr;
    int val,prior,sz,sum;
};

Node nil;
Node *T = &nil;

mt19937 my_rand(time(NULL));

int n,k;

int Max[100005],Max2[100005],d[100005];

vector<pair<int,int>> Gaux[100005];
vector<int> G[100005];

int l[100005];

int rez[100005];

Node *modfiu(Node *nod, bool care, Node *son)
{
    if(care==0)
    {
        nod -> st = son;
    }
    else
    {
        nod -> dr = son;
    }
    nod -> sz = nod->st->sz + 1 + nod->dr->sz;
    nod -> sum = nod->st->sum + nod->val + nod->dr->sum;
    return nod;
}

Node *join(Node *st, Node *dr)
{
    if(st==&nil)
    {
        return dr;
    }
    if(dr==&nil)
    {
        return st;
    }
    if(st->prior>=dr->prior)
    {
        return modfiu(st,1,join(st->dr,dr));
    }
    return modfiu(dr,0,join(st,dr->st));
}

pair<Node*,Node*> split(Node *nod, int k)
{
    if(nod==&nil)
    {
        return {&nil,&nil};
    }
    if(nod->st->sz>=k)
    {
        auto t = split(nod->st,k);
        return {t.first,modfiu(nod,0,t.second)};
    }
    auto t = split(nod->dr,k - nod->st->sz - 1);
    return {modfiu(nod,1,t.first),t.second};
}

int Search(Node *nod, int val)
{
    if(nod==&nil)
    {
        return 0;
    }
    if(val>=nod->val)
    {
        return nod->st->sz + 1 + Search(nod->dr,val);
    }
    return Search(nod->st,val);
}

void Add(int val)
{
    int poz = Search(T,val);
    auto t = split(T,poz);
    T = join(t.first,join(new Node{&nil,&nil,val,my_rand(),1,val},t.second));
}

void Remove(int val)
{
    int poz = Search(T,val);
    auto t = split(T,poz-1);
    auto t2 = split(t.second,1);
    T = join(t.first,t2.second);
}

int kmax()
{
    auto t = split(T,T -> sz - k);
    int rez = t.second -> sum;
    T = join(t.first,t.second);
    return rez;
}

void preset(int nod, int dad = 0)
{
    for(auto it : Gaux[nod])
    {
        if(it.first==dad)
        {
            continue;
        }
        preset(it.first,nod);
        d[it.first] = it.second;
    }
}

void dfs(int nod, int dad = 0)
{
    for(auto it : G[nod])
    {
        if(it==dad)
        {
            continue;
        }
        dfs(it,nod);
        if(l[it] + d[it] > l[Max[nod]] + d[Max[nod]])
        {
            Max2[nod] = Max[nod];
            Max[nod] = it;
        }
        else if(l[it] + d[it] > l[Max2[nod]] + d[Max2[nod]])
        {
            Max2[nod] = it;
        }
    }
    l[nod] = l[Max[nod]] + d[Max[nod]];
    for(auto it : G[nod])
    {
        if(it==dad || it==Max[nod])
        {
            continue;
        }
        Add(l[it] + d[it]);
    }
}

void dfs_solve(int nod, int dad = 0, int lsus = 0, bool mergsus = false)
{
    rez[nod] = kmax();
    for(auto it : G[nod])
    {
        if(it==dad)
        {
            continue;
        }
        if(mergsus)
        {
            int new_l = max(l[it],lsus + d[it]);
            int new_lsus = d[it] + lsus;
            bool new_mergsus = false;
            Remove(lsus);
            Add(new_l);
            Remove(l[it] + d[it]);
            if(new_l!=l[it])
            {
                new_mergsus = true;
                Add(l[Max[it]] + d[Max[it]]);
            }
            else
            {
                new_mergsus = false;
                Add(new_lsus);
            }
            dfs_solve(it,nod,new_lsus,new_mergsus);
            if(new_l!=l[it])
            {
                Remove(l[Max[it]] + d[Max[it]]);
            }
            else
            {
                Remove(new_lsus);
            }
            Add(l[it] + d[it]);
            Remove(new_l);
            Add(lsus);
            continue;
        }
        if(it!=Max[nod])
        {
            int new_l = max(l[it],l[nod] + d[it]);
            int new_lsus = d[it] + l[nod];
            bool new_mergsus = false;
            Remove(l[nod]);
            Add(new_l);
            Remove(l[it] + d[it]);
            if(new_l!=l[it])
            {
                new_mergsus = true;
                Add(l[Max[it]] + d[Max[it]]);
            }
            else
            {
                new_mergsus = false;
                Add(new_lsus);
            }
            dfs_solve(it,nod,new_lsus,new_mergsus);
            if(new_l!=l[it])
            {
                Remove(l[Max[it]] + d[Max[it]]);
            }
            else
            {
                Remove(new_lsus);
            }
            Add(l[it] + d[it]);
            Remove(new_l);
            Add(l[nod]);
            continue;
        }
        if(lsus > l[Max2[nod]] + d[Max2[nod]])
        {
            int new_l = max(l[it],lsus + d[it]);
            int new_lsus = d[it] + lsus;
            bool new_mergsus = false;
            Remove(l[nod]);
            Add(new_l);
            Remove(lsus);
            if(new_l!=l[it])
            {
                new_mergsus = true;
                Add(l[Max[it]] + d[Max[it]]);
            }
            else
            {
                new_mergsus = false;
                Add(lsus + d[it]);
            }
            dfs_solve(it,nod,new_lsus,new_mergsus);
            if(new_l!=l[it])
            {
                Remove(l[Max[it]] + d[Max[it]]);
            }
            else
            {
                Remove(lsus + d[it]);
            }
            Add(lsus);
            Remove(new_l);
            Add(l[nod]);
        }
        else
        {
            int new_l = max(l[it],l[Max2[nod]] + d[Max2[nod]] + d[it]);
            int new_lsus = d[it] + l[Max2[nod]] + d[Max2[nod]];
            bool new_mergsus = false;
            Remove(l[nod]);
            Add(new_l);
            if(Max2[nod])
            {
                Remove(l[Max2[nod]] + d[Max2[nod]]);
            }
            if(new_l!=l[it])
            {
                new_mergsus = true;
                Add(l[Max[it]] + d[Max[it]]);
            }
            else
            {
                new_mergsus = false;
                Add(l[Max2[nod]] + d[Max2[nod]] + d[it]);
            }
            dfs_solve(it,nod,new_lsus,new_mergsus);
            if(new_l!=l[it])
            {
                Remove(l[Max[it]] + d[Max[it]]);
            }
            else
            {
                Remove(l[Max2[nod]] + d[Max2[nod]] + d[it]);
            }
            if(Max2[nod])
            {
                Add(l[Max2[nod]] + d[Max2[nod]]);
            }
            Remove(new_l);
            Add(l[nod]);
        }
    }
}

signed main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin>>n>>k;
    for(int i=1; i<n; i++)
    {
        int x,y,c;
        cin>>x>>y>>c;
        Gaux[x].push_back({y,c});
        Gaux[y].push_back({x,c});
        G[x].push_back(y);
        G[y].push_back(x);
    }
    preset(1);
    dfs(1);
    Add(l[1]);
    dfs_solve(1);
    for(int i=1; i<=n; i++)
    {
        cout<<rez[i]<<'\n';
    }
    return 0;
}

Compilation message

Main.cpp: In function 'void Add(long long int)':
Main.cpp:92:57: warning: narrowing conversion of 'my_rand.std::mersenne_twister_engine<long unsigned int, 32, 624, 397, 31, 2567483615, 11, 4294967295, 7, 2636928640, 15, 4022730752, 18, 1812433253>::operator()()' from 'std::mersenne_twister_engine<long unsigned int, 32, 624, 397, 31, 2567483615, 11, 4294967295, 7, 2636928640, 15, 4022730752, 18, 1812433253>::result_type' {aka 'long unsigned int'} to 'long long int' [-Wnarrowing]
   92 |     T = join(t.first,join(new Node{&nil,&nil,val,my_rand(),1,val},t.second));
      |                                                  ~~~~~~~^~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 2 ms 5076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 2 ms 5076 KB Output is correct
8 Correct 5 ms 5460 KB Output is correct
9 Correct 5 ms 5460 KB Output is correct
10 Correct 5 ms 5332 KB Output is correct
11 Correct 5 ms 5372 KB Output is correct
12 Correct 5 ms 5460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 2 ms 5076 KB Output is correct
8 Correct 5 ms 5460 KB Output is correct
9 Correct 5 ms 5460 KB Output is correct
10 Correct 5 ms 5332 KB Output is correct
11 Correct 5 ms 5372 KB Output is correct
12 Correct 5 ms 5460 KB Output is correct
13 Correct 9 ms 5844 KB Output is correct
14 Correct 7 ms 5972 KB Output is correct
15 Correct 7 ms 5844 KB Output is correct
16 Correct 8 ms 5844 KB Output is correct
17 Correct 8 ms 5784 KB Output is correct
18 Correct 7 ms 5704 KB Output is correct
19 Correct 8 ms 5852 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 482 ms 47224 KB Output is correct
2 Correct 544 ms 49236 KB Output is correct
3 Correct 400 ms 44020 KB Output is correct
4 Correct 467 ms 47220 KB Output is correct
5 Correct 572 ms 48196 KB Output is correct
6 Correct 511 ms 47356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 2 ms 5076 KB Output is correct
8 Correct 5 ms 5460 KB Output is correct
9 Correct 5 ms 5460 KB Output is correct
10 Correct 5 ms 5332 KB Output is correct
11 Correct 5 ms 5372 KB Output is correct
12 Correct 5 ms 5460 KB Output is correct
13 Correct 9 ms 5844 KB Output is correct
14 Correct 7 ms 5972 KB Output is correct
15 Correct 7 ms 5844 KB Output is correct
16 Correct 8 ms 5844 KB Output is correct
17 Correct 8 ms 5784 KB Output is correct
18 Correct 7 ms 5704 KB Output is correct
19 Correct 8 ms 5852 KB Output is correct
20 Correct 482 ms 47224 KB Output is correct
21 Correct 544 ms 49236 KB Output is correct
22 Correct 400 ms 44020 KB Output is correct
23 Correct 467 ms 47220 KB Output is correct
24 Correct 572 ms 48196 KB Output is correct
25 Correct 511 ms 47356 KB Output is correct
26 Correct 506 ms 47692 KB Output is correct
27 Correct 489 ms 49228 KB Output is correct
28 Correct 527 ms 49700 KB Output is correct
29 Correct 346 ms 44152 KB Output is correct
30 Correct 542 ms 47716 KB Output is correct
31 Correct 419 ms 46312 KB Output is correct
32 Correct 486 ms 48460 KB Output is correct
33 Correct 555 ms 47700 KB Output is correct
34 Correct 310 ms 43724 KB Output is correct
35 Correct 491 ms 47648 KB Output is correct
36 Correct 414 ms 49420 KB Output is correct