Submission #638203

# Submission time Handle Problem Language Result Execution time Memory
638203 2022-09-04T21:12:39 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 71900 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
const int lg = 18;
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
int maxind(int i, int h)
{
	//return max ind of col i so that corresponding height is <= h
	int b = -1;
	for(int e = lg; e >= 0; e--)
	{
		if(b + (1<<e) < sz(fish[i]) && fish[i][b + (1<<e)].first <= h)
			b += (1<<e);
	}
	return b;
}
 
ll htwt(int i, int h)
{
	int j = maxind(i, h);
	if(j == -1)
		return 0;
	else
		return fishpref[i][j];
}
 
ll invhtwt(int i, int h)
{
	return tot[i] - htwt(i, h-1);
}
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	if(N == 2)
	{
		vvll sm(2, vll(2, 0));
		for(int j = 0; j < M; j++)
			sm[X[j]][Y[j]] += W[j];
		return max(sm[0][0] + sm[0][1], sm[1][0] + sm[1][1]);
	}
 
	int xmx = 0;
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		xmx = max(xmx, X[j] + 2);
		Y[j]++;
	}
	xmx = min(xmx, N);
 
	// cerr << "xmx = " << xmx << '\n';
 
	vpll fish[1+N];
	vll fishpref[1+N];
 
	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= xmx; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = vll(sz(fish[r]));
		for(int i = 0; i < sz(fishpref[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = vll{0};
 
	vvll inc(1+N), dec(1+N);
	vvll incpref(1+N), decpref(1+N); //pref inc dec mx
	inc[0] = dec[0] = vll{0};
 
	// cerr << "done\n";
 
	for(int r = 1; r <= xmx; r++)
	{
		incpref[r-1] = inc[r-1];
		decpref[r-1] = dec[r-1];
		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		inc[r] = dec[r] = vll(sz(fish[r]), 0);
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
 
			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];
 
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}
 
				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;
 
		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;
 
			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}
 
			// ll prevpwt = htwt(r-1, fish[r][i].first - 1);
			// cerr << prevpwt << " " << qwt << '\n';
			// assert(prevpwt == qwt);
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				//B
				/*for(int j = 0; j <= ploci; j++)
				{
					// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					ll medcatch = 0;
					for(int k = 0; k < sz(fish[r-1]); k++)
						if(fish[r-1][k].first <= fish[r][i].first - 1)
							medcatch += fish[r-1][k].second;
 
					selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				}*/
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
				// for(int j = 0; j <= ploci; j++)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					
 
				// 	// selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + Bcatch);
				// 	selfmax(basic, )
				// }
 
 
				//C
				// for(int j = sz(fish[r-2])-1; j > ploci; j--)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
				// 	ll medcatch = 0;
				// 	for(int k = 0; k < sz(fish[r-1]); k++)
				// 		if(fish[r-1][k].first <= fish[r-2][j].first - 1)
				// 			medcatch += fish[r-1][k].second;
 
				// 	selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				// }
 
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			// for(int j = 0; j < sz(fish[r-1]) && fish[r-1][j].first <= fish[r][i].first; j++)
			// {
			// 	// cerr << "j = " << j << " , " << fish[r-1][j].first-1 << '\n';
			// 	// ll ext = 0;
				
			// 	// cerr << "case 1\n";
			// 	// for(int k = j; k < sz(fish[r-1]); k++)
			// 	// {
			// 	// 	if(fish[r-1][k].first <= fish[r][i].first - 1)
			// 	// 		ext += fish[r-1][k].second;
			// 	// }
			// 	// if(j >= 1)
			// 	// 	ext -= fishpref[r-1][j-1];
			// 	// ll ext = -invhtwt(r-1, fish[r][i].first);
 
			// 	selfmax(inc[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// 	selfmax(dec[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// }
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;
 
		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}
	}
 
	ll res = 0;
	for(vll x : inc)
		for(ll y : x)
			res = max(res, y);
	for(vll x : dec)
		for(ll y : x)
			res = max(res, y);
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 48 ms 30008 KB Output is correct
2 Correct 58 ms 33960 KB Output is correct
3 Correct 13 ms 22228 KB Output is correct
4 Correct 12 ms 22228 KB Output is correct
5 Correct 210 ms 70372 KB Output is correct
6 Correct 298 ms 71900 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1101 ms 34716 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 11 ms 22100 KB Output is correct
2 Correct 69 ms 42596 KB Output is correct
3 Correct 80 ms 40492 KB Output is correct
4 Correct 76 ms 41596 KB Output is correct
5 Correct 107 ms 45644 KB Output is correct
6 Correct 105 ms 45644 KB Output is correct
7 Correct 112 ms 45608 KB Output is correct
8 Correct 110 ms 45632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5788 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5788 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 5 ms 5972 KB Output is correct
17 Correct 23 ms 10172 KB Output is correct
18 Correct 22 ms 10672 KB Output is correct
19 Correct 22 ms 10592 KB Output is correct
20 Correct 20 ms 10572 KB Output is correct
21 Correct 21 ms 10540 KB Output is correct
22 Correct 41 ms 15308 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 15 ms 8660 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 6 ms 6612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5788 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 5 ms 5972 KB Output is correct
17 Correct 23 ms 10172 KB Output is correct
18 Correct 22 ms 10672 KB Output is correct
19 Correct 22 ms 10592 KB Output is correct
20 Correct 20 ms 10572 KB Output is correct
21 Correct 21 ms 10540 KB Output is correct
22 Correct 41 ms 15308 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 15 ms 8660 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 6 ms 6612 KB Output is correct
27 Correct 5 ms 7124 KB Output is correct
28 Correct 119 ms 28296 KB Output is correct
29 Correct 273 ms 35092 KB Output is correct
30 Correct 135 ms 34892 KB Output is correct
31 Correct 142 ms 34892 KB Output is correct
32 Correct 152 ms 37336 KB Output is correct
33 Correct 136 ms 34892 KB Output is correct
34 Correct 135 ms 34844 KB Output is correct
35 Correct 52 ms 17780 KB Output is correct
36 Correct 142 ms 35804 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 22100 KB Output is correct
2 Correct 69 ms 42596 KB Output is correct
3 Correct 80 ms 40492 KB Output is correct
4 Correct 76 ms 41596 KB Output is correct
5 Correct 107 ms 45644 KB Output is correct
6 Correct 105 ms 45644 KB Output is correct
7 Correct 112 ms 45608 KB Output is correct
8 Correct 110 ms 45632 KB Output is correct
9 Correct 117 ms 51072 KB Output is correct
10 Correct 80 ms 29412 KB Output is correct
11 Correct 161 ms 52984 KB Output is correct
12 Correct 3 ms 5716 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 3 ms 5716 KB Output is correct
17 Correct 2 ms 5744 KB Output is correct
18 Correct 13 ms 22228 KB Output is correct
19 Correct 12 ms 22136 KB Output is correct
20 Correct 68 ms 42444 KB Output is correct
21 Correct 66 ms 42560 KB Output is correct
22 Correct 155 ms 51652 KB Output is correct
23 Correct 166 ms 59416 KB Output is correct
24 Correct 181 ms 60776 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 48 ms 30008 KB Output is correct
2 Correct 58 ms 33960 KB Output is correct
3 Correct 13 ms 22228 KB Output is correct
4 Correct 12 ms 22228 KB Output is correct
5 Correct 210 ms 70372 KB Output is correct
6 Correct 298 ms 71900 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1101 ms 34716 KB Time limit exceeded
9 Halted 0 ms 0 KB -