Submission #638188

# Submission time Handle Problem Language Result Execution time Memory
638188 2022-09-04T20:55:58 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 71832 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
const int lg = 18;
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
int maxind(int i, int h)
{
	//return max ind of col i so that corresponding height is <= h
	int b = -1;
	for(int e = lg; e >= 0; e--)
	{
		if(b + (1<<e) < sz(fish[i]) && fish[i][b + (1<<e)].first <= h)
			b += (1<<e);
	}
	return b;
}
 
ll htwt(int i, int h)
{
	int j = maxind(i, h);
	if(j == -1)
		return 0;
	else
		return fishpref[i][j];
}
 
ll invhtwt(int i, int h)
{
	return tot[i] - htwt(i, h-1);
}
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	int xmx = 0;
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		xmx = max(xmx, X[j] + 2);
		Y[j]++;
	}
	xmx = min(xmx, N);

	// cerr << "xmx = " << xmx << '\n';
 
	vpll fish[1+N];
	vll fishpref[1+N];
 
	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= xmx; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = vll(sz(fish[r]));
		for(int i = 0; i < sz(fishpref[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = vll{0};
 
	vvll inc(1+N), dec(1+N);
	vvll incpref(1+N), decpref(1+N); //pref inc dec mx
	inc[0] = dec[0] = vll{0};
 
	// cerr << "done\n";
 
	for(int r = 1; r <= xmx; r++)
	{
		incpref[r-1] = inc[r-1];
		decpref[r-1] = dec[r-1];
		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		inc[r] = dec[r] = vll(sz(fish[r]), 0);
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
 
			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];
 
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}
 
				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;
 
		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;
 
			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}
 
			// ll prevpwt = htwt(r-1, fish[r][i].first - 1);
			// cerr << prevpwt << " " << qwt << '\n';
			// assert(prevpwt == qwt);
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				//B
				/*for(int j = 0; j <= ploci; j++)
				{
					// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					ll medcatch = 0;
					for(int k = 0; k < sz(fish[r-1]); k++)
						if(fish[r-1][k].first <= fish[r][i].first - 1)
							medcatch += fish[r-1][k].second;
 
					selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				}*/
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
				// for(int j = 0; j <= ploci; j++)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					
 
				// 	// selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + Bcatch);
				// 	selfmax(basic, )
				// }
 
 
				//C
				// for(int j = sz(fish[r-2])-1; j > ploci; j--)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
				// 	ll medcatch = 0;
				// 	for(int k = 0; k < sz(fish[r-1]); k++)
				// 		if(fish[r-1][k].first <= fish[r-2][j].first - 1)
				// 			medcatch += fish[r-1][k].second;
 
				// 	selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				// }
 
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			// for(int j = 0; j < sz(fish[r-1]) && fish[r-1][j].first <= fish[r][i].first; j++)
			// {
			// 	// cerr << "j = " << j << " , " << fish[r-1][j].first-1 << '\n';
			// 	// ll ext = 0;
				
			// 	// cerr << "case 1\n";
			// 	// for(int k = j; k < sz(fish[r-1]); k++)
			// 	// {
			// 	// 	if(fish[r-1][k].first <= fish[r][i].first - 1)
			// 	// 		ext += fish[r-1][k].second;
			// 	// }
			// 	// if(j >= 1)
			// 	// 	ext -= fishpref[r-1][j-1];
			// 	// ll ext = -invhtwt(r-1, fish[r][i].first);
 
			// 	selfmax(inc[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// 	selfmax(dec[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// }
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;
 
		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}
	}
 
	ll res = 0;
	for(vll x : inc)
		for(ll y : x)
			res = max(res, y);
	for(vll x : dec)
		for(ll y : x)
			res = max(res, y);
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 51 ms 30016 KB Output is correct
2 Correct 63 ms 33880 KB Output is correct
3 Correct 12 ms 22228 KB Output is correct
4 Correct 13 ms 22228 KB Output is correct
5 Correct 209 ms 70256 KB Output is correct
6 Correct 292 ms 71832 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1099 ms 34704 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 12 ms 22228 KB Output is correct
2 Correct 84 ms 42448 KB Output is correct
3 Correct 81 ms 40376 KB Output is correct
4 Correct 75 ms 41640 KB Output is correct
5 Correct 126 ms 45592 KB Output is correct
6 Correct 115 ms 45692 KB Output is correct
7 Correct 108 ms 45604 KB Output is correct
8 Correct 105 ms 45652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 4 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5776 KB Output is correct
8 Correct 4 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 4 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5776 KB Output is correct
8 Correct 4 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 26 ms 10168 KB Output is correct
18 Correct 32 ms 10664 KB Output is correct
19 Correct 30 ms 10524 KB Output is correct
20 Correct 30 ms 10528 KB Output is correct
21 Correct 22 ms 10580 KB Output is correct
22 Correct 45 ms 15292 KB Output is correct
23 Correct 8 ms 6740 KB Output is correct
24 Correct 16 ms 8660 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 8 ms 6692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 4 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5776 KB Output is correct
8 Correct 4 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 26 ms 10168 KB Output is correct
18 Correct 32 ms 10664 KB Output is correct
19 Correct 30 ms 10524 KB Output is correct
20 Correct 30 ms 10528 KB Output is correct
21 Correct 22 ms 10580 KB Output is correct
22 Correct 45 ms 15292 KB Output is correct
23 Correct 8 ms 6740 KB Output is correct
24 Correct 16 ms 8660 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 8 ms 6692 KB Output is correct
27 Correct 6 ms 7124 KB Output is correct
28 Correct 129 ms 28364 KB Output is correct
29 Correct 327 ms 35076 KB Output is correct
30 Correct 141 ms 34892 KB Output is correct
31 Correct 142 ms 34908 KB Output is correct
32 Correct 163 ms 37324 KB Output is correct
33 Correct 184 ms 34904 KB Output is correct
34 Correct 144 ms 34896 KB Output is correct
35 Correct 54 ms 17784 KB Output is correct
36 Correct 152 ms 35788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 22228 KB Output is correct
2 Correct 84 ms 42448 KB Output is correct
3 Correct 81 ms 40376 KB Output is correct
4 Correct 75 ms 41640 KB Output is correct
5 Correct 126 ms 45592 KB Output is correct
6 Correct 115 ms 45692 KB Output is correct
7 Correct 108 ms 45604 KB Output is correct
8 Correct 105 ms 45652 KB Output is correct
9 Correct 124 ms 51180 KB Output is correct
10 Correct 102 ms 29400 KB Output is correct
11 Correct 178 ms 53104 KB Output is correct
12 Correct 3 ms 5716 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 3 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 11 ms 22100 KB Output is correct
19 Correct 13 ms 22132 KB Output is correct
20 Correct 67 ms 42520 KB Output is correct
21 Correct 69 ms 42444 KB Output is correct
22 Correct 166 ms 51712 KB Output is correct
23 Correct 166 ms 59416 KB Output is correct
24 Correct 173 ms 60952 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 51 ms 30016 KB Output is correct
2 Correct 63 ms 33880 KB Output is correct
3 Correct 12 ms 22228 KB Output is correct
4 Correct 13 ms 22228 KB Output is correct
5 Correct 209 ms 70256 KB Output is correct
6 Correct 292 ms 71832 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1099 ms 34704 KB Time limit exceeded
9 Halted 0 ms 0 KB -