Submission #638186

# Submission time Handle Problem Language Result Execution time Memory
638186 2022-09-04T20:53:35 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 71884 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
const int lg = 18;
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
int maxind(int i, int h)
{
	//return max ind of col i so that corresponding height is <= h
	int b = -1;
	for(int e = lg; e >= 0; e--)
	{
		if(b + (1<<e) < sz(fish[i]) && fish[i][b + (1<<e)].first <= h)
			b += (1<<e);
	}
	return b;
}
 
ll htwt(int i, int h)
{
	int j = maxind(i, h);
	if(j == -1)
		return 0;
	else
		return fishpref[i][j];
}
 
ll invhtwt(int i, int h)
{
	return tot[i] - htwt(i, h-1);
}
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	int xmx = 0;
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		xmx = max(xmx, X[j] + 5);
		Y[j]++;
	}
	xmx = min(xmx, N);

	// cerr << "xmx = " << xmx << '\n';
 
	vpll fish[1+N];
	vll fishpref[1+N];
 
	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= xmx; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = vll(sz(fish[r]));
		for(int i = 0; i < sz(fishpref[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = vll{0};
 
	vvll inc(1+N), dec(1+N);
	vvll incpref(1+N), decpref(1+N); //pref inc dec mx
	inc[0] = dec[0] = vll{0};
 
	// cerr << "done\n";
 
	for(int r = 1; r <= xmx; r++)
	{
		incpref[r-1] = inc[r-1];
		decpref[r-1] = dec[r-1];
		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		inc[r] = dec[r] = vll(sz(fish[r]), 0);
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
 
			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];
 
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}
 
				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;
 
		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;
 
			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}
 
			// ll prevpwt = htwt(r-1, fish[r][i].first - 1);
			// cerr << prevpwt << " " << qwt << '\n';
			// assert(prevpwt == qwt);
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				//B
				/*for(int j = 0; j <= ploci; j++)
				{
					// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					ll medcatch = 0;
					for(int k = 0; k < sz(fish[r-1]); k++)
						if(fish[r-1][k].first <= fish[r][i].first - 1)
							medcatch += fish[r-1][k].second;
 
					selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				}*/
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
				// for(int j = 0; j <= ploci; j++)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					
 
				// 	// selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + Bcatch);
				// 	selfmax(basic, )
				// }
 
 
				//C
				// for(int j = sz(fish[r-2])-1; j > ploci; j--)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
				// 	ll medcatch = 0;
				// 	for(int k = 0; k < sz(fish[r-1]); k++)
				// 		if(fish[r-1][k].first <= fish[r-2][j].first - 1)
				// 			medcatch += fish[r-1][k].second;
 
				// 	selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				// }
 
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			// for(int j = 0; j < sz(fish[r-1]) && fish[r-1][j].first <= fish[r][i].first; j++)
			// {
			// 	// cerr << "j = " << j << " , " << fish[r-1][j].first-1 << '\n';
			// 	// ll ext = 0;
				
			// 	// cerr << "case 1\n";
			// 	// for(int k = j; k < sz(fish[r-1]); k++)
			// 	// {
			// 	// 	if(fish[r-1][k].first <= fish[r][i].first - 1)
			// 	// 		ext += fish[r-1][k].second;
			// 	// }
			// 	// if(j >= 1)
			// 	// 	ext -= fishpref[r-1][j-1];
			// 	// ll ext = -invhtwt(r-1, fish[r][i].first);
 
			// 	selfmax(inc[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// 	selfmax(dec[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// }
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;
 
		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}
	}
 
	ll res = 0;
	for(vll x : inc)
		for(ll y : x)
			res = max(res, y);
	for(vll x : dec)
		for(ll y : x)
			res = max(res, y);
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 61 ms 30016 KB Output is correct
2 Correct 63 ms 33892 KB Output is correct
3 Correct 12 ms 22100 KB Output is correct
4 Correct 13 ms 22228 KB Output is correct
5 Correct 203 ms 70248 KB Output is correct
6 Correct 320 ms 71884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1073 ms 34752 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 15 ms 22144 KB Output is correct
2 Correct 83 ms 42492 KB Output is correct
3 Correct 91 ms 40324 KB Output is correct
4 Correct 87 ms 41664 KB Output is correct
5 Correct 107 ms 45700 KB Output is correct
6 Correct 108 ms 45628 KB Output is correct
7 Correct 117 ms 45632 KB Output is correct
8 Correct 114 ms 45632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 4 ms 5760 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6096 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 3 ms 5972 KB Output is correct
13 Correct 4 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 4 ms 5760 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6096 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 3 ms 5972 KB Output is correct
13 Correct 4 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 6 ms 5972 KB Output is correct
17 Correct 28 ms 10152 KB Output is correct
18 Correct 25 ms 10708 KB Output is correct
19 Correct 22 ms 10552 KB Output is correct
20 Correct 30 ms 10552 KB Output is correct
21 Correct 25 ms 10580 KB Output is correct
22 Correct 45 ms 15292 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 16 ms 8660 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 7 ms 6612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 4 ms 5760 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6096 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 3 ms 5972 KB Output is correct
13 Correct 4 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 6 ms 5972 KB Output is correct
17 Correct 28 ms 10152 KB Output is correct
18 Correct 25 ms 10708 KB Output is correct
19 Correct 22 ms 10552 KB Output is correct
20 Correct 30 ms 10552 KB Output is correct
21 Correct 25 ms 10580 KB Output is correct
22 Correct 45 ms 15292 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 16 ms 8660 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 7 ms 6612 KB Output is correct
27 Correct 6 ms 7124 KB Output is correct
28 Correct 126 ms 28276 KB Output is correct
29 Correct 319 ms 35076 KB Output is correct
30 Correct 139 ms 34896 KB Output is correct
31 Correct 151 ms 34808 KB Output is correct
32 Correct 183 ms 37292 KB Output is correct
33 Correct 163 ms 34956 KB Output is correct
34 Correct 143 ms 34892 KB Output is correct
35 Correct 54 ms 17780 KB Output is correct
36 Correct 160 ms 35892 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 22144 KB Output is correct
2 Correct 83 ms 42492 KB Output is correct
3 Correct 91 ms 40324 KB Output is correct
4 Correct 87 ms 41664 KB Output is correct
5 Correct 107 ms 45700 KB Output is correct
6 Correct 108 ms 45628 KB Output is correct
7 Correct 117 ms 45632 KB Output is correct
8 Correct 114 ms 45632 KB Output is correct
9 Correct 115 ms 51124 KB Output is correct
10 Correct 80 ms 29372 KB Output is correct
11 Correct 224 ms 53048 KB Output is correct
12 Correct 4 ms 5716 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 3 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 12 ms 22164 KB Output is correct
19 Correct 12 ms 22100 KB Output is correct
20 Correct 72 ms 42480 KB Output is correct
21 Correct 100 ms 42440 KB Output is correct
22 Correct 160 ms 51700 KB Output is correct
23 Correct 172 ms 59612 KB Output is correct
24 Correct 168 ms 60748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 61 ms 30016 KB Output is correct
2 Correct 63 ms 33892 KB Output is correct
3 Correct 12 ms 22100 KB Output is correct
4 Correct 13 ms 22228 KB Output is correct
5 Correct 203 ms 70248 KB Output is correct
6 Correct 320 ms 71884 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1073 ms 34752 KB Time limit exceeded
9 Halted 0 ms 0 KB -