Submission #638181

# Submission time Handle Problem Language Result Execution time Memory
638181 2022-09-04T20:46:01 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 60292 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
const int lg = 18;
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
int maxind(int i, int h)
{
	//return max ind of col i so that corresponding height is <= h
	int b = -1;
	for(int e = lg; e >= 0; e--)
	{
		if(b + (1<<e) < sz(fish[i]) && fish[i][b + (1<<e)].first <= h)
			b += (1<<e);
	}
	return b;
}
 
ll htwt(int i, int h)
{
	int j = maxind(i, h);
	if(j == -1)
		return 0;
	else
		return fishpref[i][j];
}
 
ll invhtwt(int i, int h)
{
	return tot[i] - htwt(i, h-1);
}
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		Y[j]++;
	}
 
	// vpll fish[1+N];
	// vll fishpref[1+N];
 
	for(int j = 0; j < M; j++)
	{
		fish[X[j]].push_back({Y[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int r = 1; r <= N; r++)
	{
		fish[r].push_back({N+1, 0});
		sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = vll(sz(fish[r]));
		for(int i = 0; i < sz(fishpref[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = vll{0};
 
	vvll inc(1+N), dec(1+N);
	vvll incpref(1+N), decpref(1+N); //pref inc dec mx
	inc[0] = dec[0] = vll{0};
 
	// cerr << "done\n";
 
	for(int r = 1; r <= N; r++)
	{
		incpref[r-1] = inc[r-1];
		decpref[r-1] = dec[r-1];
		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		inc[r] = dec[r] = vll(sz(fish[r]), 0);
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));

			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];

			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}

				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;

		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;

			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}

			// ll prevpwt = htwt(r-1, fish[r][i].first - 1);
			// cerr << prevpwt << " " << qwt << '\n';
			// assert(prevpwt == qwt);
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				//B
				/*for(int j = 0; j <= ploci; j++)
				{
					// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					ll medcatch = 0;
					for(int k = 0; k < sz(fish[r-1]); k++)
						if(fish[r-1][k].first <= fish[r][i].first - 1)
							medcatch += fish[r-1][k].second;
 
					selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				}*/
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
				// for(int j = 0; j <= ploci; j++)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					
 
				// 	// selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + Bcatch);
				// 	selfmax(basic, )
				// }
 
 
				//C
				// for(int j = sz(fish[r-2])-1; j > ploci; j--)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
				// 	ll medcatch = 0;
				// 	for(int k = 0; k < sz(fish[r-1]); k++)
				// 		if(fish[r-1][k].first <= fish[r-2][j].first - 1)
				// 			medcatch += fish[r-1][k].second;
 
				// 	selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				// }
 
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			// for(int j = 0; j < sz(fish[r-1]) && fish[r-1][j].first <= fish[r][i].first; j++)
			// {
			// 	// cerr << "j = " << j << " , " << fish[r-1][j].first-1 << '\n';
			// 	// ll ext = 0;
				
			// 	// cerr << "case 1\n";
			// 	// for(int k = j; k < sz(fish[r-1]); k++)
			// 	// {
			// 	// 	if(fish[r-1][k].first <= fish[r][i].first - 1)
			// 	// 		ext += fish[r-1][k].second;
			// 	// }
			// 	// if(j >= 1)
			// 	// 	ext -= fishpref[r-1][j-1];
			// 	// ll ext = -invhtwt(r-1, fish[r][i].first);
 
			// 	selfmax(inc[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// 	selfmax(dec[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// }
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;

		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}
	}
 
	ll res = 0;
	for(vll x : inc)
		for(ll y : x)
			res = max(res, y);
	for(vll x : dec)
		for(ll y : x)
			res = max(res, y);
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 86 ms 39500 KB Output is correct
2 Correct 108 ms 44112 KB Output is correct
3 Correct 64 ms 35476 KB Output is correct
4 Correct 63 ms 35456 KB Output is correct
5 Correct 181 ms 59684 KB Output is correct
6 Correct 243 ms 60292 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1092 ms 32680 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 66 ms 35464 KB Output is correct
2 Correct 63 ms 35400 KB Output is correct
3 Correct 77 ms 33764 KB Output is correct
4 Correct 74 ms 36280 KB Output is correct
5 Correct 106 ms 37836 KB Output is correct
6 Correct 94 ms 37812 KB Output is correct
7 Correct 101 ms 37772 KB Output is correct
8 Correct 102 ms 37836 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5728 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5860 KB Output is correct
10 Correct 5 ms 5972 KB Output is correct
11 Correct 4 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5748 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5728 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5860 KB Output is correct
10 Correct 5 ms 5972 KB Output is correct
11 Correct 4 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5748 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 23 ms 9540 KB Output is correct
18 Correct 23 ms 10028 KB Output is correct
19 Correct 21 ms 9940 KB Output is correct
20 Correct 27 ms 9940 KB Output is correct
21 Correct 21 ms 9840 KB Output is correct
22 Correct 46 ms 14008 KB Output is correct
23 Correct 7 ms 6612 KB Output is correct
24 Correct 15 ms 8276 KB Output is correct
25 Correct 4 ms 5844 KB Output is correct
26 Correct 6 ms 6532 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5728 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5860 KB Output is correct
10 Correct 5 ms 5972 KB Output is correct
11 Correct 4 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5748 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 23 ms 9540 KB Output is correct
18 Correct 23 ms 10028 KB Output is correct
19 Correct 21 ms 9940 KB Output is correct
20 Correct 27 ms 9940 KB Output is correct
21 Correct 21 ms 9840 KB Output is correct
22 Correct 46 ms 14008 KB Output is correct
23 Correct 7 ms 6612 KB Output is correct
24 Correct 15 ms 8276 KB Output is correct
25 Correct 4 ms 5844 KB Output is correct
26 Correct 6 ms 6532 KB Output is correct
27 Correct 5 ms 6740 KB Output is correct
28 Correct 122 ms 24832 KB Output is correct
29 Correct 314 ms 31828 KB Output is correct
30 Correct 134 ms 31444 KB Output is correct
31 Correct 135 ms 31456 KB Output is correct
32 Correct 162 ms 32792 KB Output is correct
33 Correct 142 ms 31440 KB Output is correct
34 Correct 140 ms 31404 KB Output is correct
35 Correct 51 ms 16588 KB Output is correct
36 Correct 152 ms 32972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 66 ms 35464 KB Output is correct
2 Correct 63 ms 35400 KB Output is correct
3 Correct 77 ms 33764 KB Output is correct
4 Correct 74 ms 36280 KB Output is correct
5 Correct 106 ms 37836 KB Output is correct
6 Correct 94 ms 37812 KB Output is correct
7 Correct 101 ms 37772 KB Output is correct
8 Correct 102 ms 37836 KB Output is correct
9 Correct 106 ms 40924 KB Output is correct
10 Correct 74 ms 25136 KB Output is correct
11 Correct 165 ms 44620 KB Output is correct
12 Correct 3 ms 5716 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 3 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 63 ms 35476 KB Output is correct
19 Correct 64 ms 35396 KB Output is correct
20 Correct 63 ms 35404 KB Output is correct
21 Correct 66 ms 35648 KB Output is correct
22 Correct 128 ms 42460 KB Output is correct
23 Correct 162 ms 50888 KB Output is correct
24 Correct 159 ms 51520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 39500 KB Output is correct
2 Correct 108 ms 44112 KB Output is correct
3 Correct 64 ms 35476 KB Output is correct
4 Correct 63 ms 35456 KB Output is correct
5 Correct 181 ms 59684 KB Output is correct
6 Correct 243 ms 60292 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1092 ms 32680 KB Time limit exceeded
9 Halted 0 ms 0 KB -