Submission #638166

# Submission time Handle Problem Language Result Execution time Memory
638166 2022-09-04T20:13:11 Z blue Catfish Farm (IOI22_fish) C++17
61 / 100
1000 ms 60352 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
const int lg = 18;
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
int maxind(int i, int h)
{
	//return max ind of col i so that corresponding height is <= h
	int b = -1;
	for(int e = lg; e >= 0; e--)
	{
		if(b + (1<<e) < sz(fish[i]) && fish[i][b + (1<<e)].first <= h)
			b += (1<<e);
	}
	return b;
}
 
ll htwt(int i, int h)
{
	int j = maxind(i, h);
	if(j == -1)
		return 0;
	else
		return fishpref[i][j];
}
 
ll invhtwt(int i, int h)
{
	return tot[i] - htwt(i, h-1);
}
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		Y[j]++;
	}
 
	// vpll fish[1+N];
	// vll fishpref[1+N];
 
	for(int j = 0; j < M; j++)
	{
		fish[X[j]].push_back({Y[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int r = 1; r <= N; r++)
	{
		fish[r].push_back({N+1, 0});
		sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = vll(sz(fish[r]));
		for(int i = 0; i < sz(fishpref[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = vll{0};
 
	vvll inc(1+N), dec(1+N);
	vvll incpref(1+N), decpref(1+N); //pref inc dec mx
	inc[0] = dec[0] = vll{0};
 
	// cerr << "done\n";
 
	for(int r = 1; r <= N; r++)
	{
		incpref[r-1] = inc[r-1];
		decpref[r-1] = dec[r-1];
		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		inc[r] = dec[r] = vll(sz(fish[r]), 0);
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + htwt(r-1, fish[r][i].first - 1));
 
 
 
 
 
				int ploci = maxind(r-2, fish[r][i].first);
 
				//B
				/*for(int j = 0; j <= ploci; j++)
				{
					// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					ll medcatch = 0;
					for(int k = 0; k < sz(fish[r-1]); k++)
						if(fish[r-1][k].first <= fish[r][i].first - 1)
							medcatch += fish[r-1][k].second;
 
					selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				}*/
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
				// for(int j = 0; j <= ploci; j++)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					
 
				// 	// selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + Bcatch);
				// 	selfmax(basic, )
				// }
 
 
				//C
				// for(int j = sz(fish[r-2])-1; j > ploci; j--)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
				// 	ll medcatch = 0;
				// 	for(int k = 0; k < sz(fish[r-1]); k++)
				// 		if(fish[r-1][k].first <= fish[r-2][j].first - 1)
				// 			medcatch += fish[r-1][k].second;
 
				// 	selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				// }
 
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);

			//type D transition
 
			for(int j = 0; j < sz(fish[r-1]) && fish[r-1][j].first <= fish[r][i].first; j++)
			{
				// cerr << "j = " << j << " , " << fish[r-1][j].first-1 << '\n';
				ll ext = 0;
				
				// cerr << "case 1\n";
				// for(int k = j; k < sz(fish[r-1]); k++)
				// {
				// 	if(fish[r-1][k].first <= fish[r][i].first - 1)
				// 		ext += fish[r-1][k].second;
				// }
				if(j >= 1)
					ext -= fishpref[r-1][j-1];
				ext -= invhtwt(r-1, fish[r][i].first);
 
				selfmax(inc[r][i], tot[r-1] + inc[r-1][j] + ext);
				selfmax(dec[r][i], tot[r-1] + inc[r-1][j] + ext);
			}
 
			for(int j = sz(fish[r-1])-1; j >= 0 && fish[r-1][j].first > fish[r][i].first; j--)
			{
				
				// ll ext = 0;
				// // cerr << "case 2\n";
				// for(int k = i; k < sz(fish[r]); k++)
				// {
				// 	if(fish[r][k].first <= fish[r-1][j].first - 1)
				// 		ext += fish[r][k].second;
				// }
 
				ll ext = tot[r];
				if(i >= 1)
					ext -= fishpref[r][i-1];
				ext -= invhtwt(r, fish[r-1][j].first);
 
				selfmax(dec[r][i], dec[r-1][j] + ext);
				// cerr << r << ' ' << fish[r][i].first-1 << " : " << inc[r][i] << ' ' << dec[r][i] << '\n';		
		
			}
		}
	}
 
	ll res = 0;
	for(vll x : inc)
		for(ll y : x)
			res = max(res, y);
	for(vll x : dec)
		for(ll y : x)
			res = max(res, y);
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 116 ms 39628 KB Output is correct
2 Correct 141 ms 44092 KB Output is correct
3 Correct 119 ms 35516 KB Output is correct
4 Correct 93 ms 35420 KB Output is correct
5 Correct 252 ms 59704 KB Output is correct
6 Correct 356 ms 60352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1098 ms 32692 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 120 ms 35452 KB Output is correct
2 Correct 92 ms 35408 KB Output is correct
3 Correct 107 ms 33824 KB Output is correct
4 Correct 103 ms 36408 KB Output is correct
5 Correct 140 ms 37836 KB Output is correct
6 Correct 128 ms 37768 KB Output is correct
7 Correct 128 ms 37808 KB Output is correct
8 Correct 133 ms 37848 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6072 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5844 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6072 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5844 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 7 ms 5972 KB Output is correct
17 Correct 311 ms 9492 KB Output is correct
18 Correct 374 ms 10020 KB Output is correct
19 Correct 211 ms 9964 KB Output is correct
20 Correct 235 ms 9948 KB Output is correct
21 Correct 202 ms 9880 KB Output is correct
22 Correct 855 ms 13996 KB Output is correct
23 Correct 14 ms 6612 KB Output is correct
24 Correct 102 ms 8312 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 18 ms 6528 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 5 ms 6072 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5844 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 7 ms 5972 KB Output is correct
17 Correct 311 ms 9492 KB Output is correct
18 Correct 374 ms 10020 KB Output is correct
19 Correct 211 ms 9964 KB Output is correct
20 Correct 235 ms 9948 KB Output is correct
21 Correct 202 ms 9880 KB Output is correct
22 Correct 855 ms 13996 KB Output is correct
23 Correct 14 ms 6612 KB Output is correct
24 Correct 102 ms 8312 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 18 ms 6528 KB Output is correct
27 Correct 7 ms 6740 KB Output is correct
28 Execution timed out 1078 ms 19732 KB Time limit exceeded
29 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 120 ms 35452 KB Output is correct
2 Correct 92 ms 35408 KB Output is correct
3 Correct 107 ms 33824 KB Output is correct
4 Correct 103 ms 36408 KB Output is correct
5 Correct 140 ms 37836 KB Output is correct
6 Correct 128 ms 37768 KB Output is correct
7 Correct 128 ms 37808 KB Output is correct
8 Correct 133 ms 37848 KB Output is correct
9 Correct 153 ms 41004 KB Output is correct
10 Correct 98 ms 25196 KB Output is correct
11 Correct 220 ms 44612 KB Output is correct
12 Correct 3 ms 5716 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5716 KB Output is correct
15 Correct 3 ms 5772 KB Output is correct
16 Correct 3 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 87 ms 35516 KB Output is correct
19 Correct 87 ms 35400 KB Output is correct
20 Correct 87 ms 35432 KB Output is correct
21 Correct 88 ms 35424 KB Output is correct
22 Correct 231 ms 42536 KB Output is correct
23 Correct 229 ms 50852 KB Output is correct
24 Correct 236 ms 51444 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 116 ms 39628 KB Output is correct
2 Correct 141 ms 44092 KB Output is correct
3 Correct 119 ms 35516 KB Output is correct
4 Correct 93 ms 35420 KB Output is correct
5 Correct 252 ms 59704 KB Output is correct
6 Correct 356 ms 60352 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1098 ms 32692 KB Time limit exceeded
9 Halted 0 ms 0 KB -