Submission #627633

# Submission time Handle Problem Language Result Execution time Memory
627633 2022-08-12T17:48:31 Z dqhungdl Catfish Farm (IOI22_fish) C++17
100 / 100
465 ms 73552 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> ii;
const int MAX = 1e5 + 5, SINF = 2e9;
const long long INF = 1e18;
bool markLow[MAX];
vector<ii> g[MAX];
vector<long long> S[MAX];
vector<vector<long long>> f[MAX];

struct FenwickTreeLow {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeLow(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i <= n; i += i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i > 0; i -= i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

struct FenwickTreeHigh {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeHigh(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i > 0; i -= i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i <= n; i += i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

//long long calcCost(int col, int L, int R) {
//    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
//    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, 0)) - g[col].begin() - 1;
//    if (l <= r)
//        return S[col][r] - (l ? S[col][l - 1] : 0);
//    return 0;
//}

long long calcCostLeft(int col, int L) {
    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
    return l ? S[col][l - 1] : 0;
}

long long calcCostRight(int col, int R) {
    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, 0)) - g[col].begin() - 1;
    return r >= 0 ? S[col][r] : 0;
}

long long max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    for (int i = 0; i < M; i++) {
        g[X[i]].emplace_back(Y[i], W[i]);
        if (!Y[i])
            markLow[X[i]] = true;
    }
    for (int i = 0; i < N; i++) {
        if (!markLow[i])
            g[i].emplace_back(0, 0);
        g[i].emplace_back(N, 0);
    }
    for (int i = 0; i < N; i++) {
        sort(g[i].begin(), g[i].end());
        S[i].resize(g[i].size());
        S[i][0] = g[i][0].second;
        for (int j = 1; j < g[i].size(); j++)
            S[i][j] = S[i][j - 1] + g[i][j].second;
        f[i].resize(g[i].size(), vector<long long>(2));
    }
    FenwickTreeLow lowTree(N + 5), lowJump(N + 5);
    FenwickTreeHigh highTree(N + 5), highJump(N + 5);
    long long rs = 0;
    for (int i = 1; i < N; i++) {
        if (i > 1) {
            lowJump.reset(), highJump.reset();
            for (int t = 0; t < g[i - 2].size(); t++) {
                lowJump.update(t, f[i - 2][t][1]);
                highJump.update(t, f[i - 2][t][1] + calcCostRight(i - 1, g[i - 2][t].first));
            }
        }
        lowTree.reset(), highTree.reset();
        for (int t = 0; t < g[i - 1].size(); t++) {
            lowTree.update(t, f[i - 1][t][0] - calcCostLeft(i - 1, g[i - 1][t].first));
            highTree.update(t, f[i - 1][t][1] + calcCostRight(i, g[i - 1][t].first));
        }
        for (int j = 0; j < g[i].size(); j++) {
            if (i > 1) {
                int low = upper_bound(g[i - 2].begin(), g[i - 2].end(), ii(g[i][j].first, SINF)) - g[i - 2].begin() - 1;
                long long tmp = lowJump.get(low) + calcCostRight(i - 1, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

                int high = low + 1;
                tmp = highJump.get(high);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

//                for (int t = 0; t < g[i - 2].size(); t++) {
//                    long long tmp = f[i - 2][t][1] + calcCost(i - 1, 0, max(g[i - 2][t].first, g[i][j].first));
//                    f[i][j][0] = max(f[i][j][0], tmp);
//                    f[i][j][1] = max(f[i][j][1], tmp);
//                }
            } else {
                long long tmp = calcCostRight(0, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);
            }

            int low = upper_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, SINF)) - g[i - 1].begin() - 1;
            long long tmp = lowTree.get(low) + calcCostRight(i - 1, g[i][j].first);
            f[i][j][0] = max(f[i][j][0], tmp);
            f[i][j][1] = max(f[i][j][1], tmp);

            int high = lower_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, 0)) - g[i - 1].begin();
            f[i][j][1] = max(f[i][j][1], highTree.get(high) - calcCostLeft(i, g[i][j].first));

            rs = max({rs, f[i][j][0], f[i][j][1]});
//            for (int t = 0; t < g[i - 1].size(); t++) {
//                if (g[i - 1][t].first <= g[i][j].first) {
//                    f[i][j][0] = max(f[i][j][0], f[i - 1][t][0] + calcCost(i - 1, g[i - 1][t].first, g[i][j].first));
//                    f[i][j][1] = max(f[i][j][1], f[i - 1][t][0] + calcCost(i - 1, g[i - 1][t].first, g[i][j].first));
//                }
//                if (g[i - 1][t].first >= g[i][j].first)
//                    f[i][j][1] = max(f[i][j][1], f[i - 1][t][1] + calcCost(i, g[i][j].first, g[i - 1][t].first));
//            }
        }
    }
    return rs;
}

//int main() {
//    freopen("../_input", "r", stdin);
//    int N, M;
//    assert(2 == scanf("%d %d", &N, &M));
//
//    std::vector<int> X(M), Y(M), W(M);
//    for (int i = 0; i < M; ++i) {
//        assert(3 == scanf("%d %d %d", &X[i], &Y[i], &W[i]));
//    }
//
//    long long result = max_weights(N, M, X, Y, W);
//    printf("%lld\n", result);
//    return 0;
//}

Compilation message

fish.cpp: In function 'long long int max_weights(int, int, std::vector<int>, std::vector<int>, std::vector<int>)':
fish.cpp:112:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  112 |         for (int j = 1; j < g[i].size(); j++)
      |                         ~~^~~~~~~~~~~~~
fish.cpp:122:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  122 |             for (int t = 0; t < g[i - 2].size(); t++) {
      |                             ~~^~~~~~~~~~~~~~~~~
fish.cpp:128:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  128 |         for (int t = 0; t < g[i - 1].size(); t++) {
      |                         ~~^~~~~~~~~~~~~~~~~
fish.cpp:132:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  132 |         for (int j = 0; j < g[i].size(); j++) {
      |                         ~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 178 ms 49756 KB Output is correct
2 Correct 213 ms 55688 KB Output is correct
3 Correct 116 ms 29260 KB Output is correct
4 Correct 117 ms 29268 KB Output is correct
5 Correct 441 ms 73552 KB Output is correct
6 Correct 423 ms 58464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 268 ms 57384 KB Output is correct
3 Correct 312 ms 65192 KB Output is correct
4 Correct 181 ms 49716 KB Output is correct
5 Correct 220 ms 55612 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7252 KB Output is correct
10 Correct 117 ms 29388 KB Output is correct
11 Correct 135 ms 29272 KB Output is correct
12 Correct 183 ms 49716 KB Output is correct
13 Correct 209 ms 55612 KB Output is correct
14 Correct 186 ms 42500 KB Output is correct
15 Correct 208 ms 45944 KB Output is correct
16 Correct 183 ms 42556 KB Output is correct
17 Correct 201 ms 45800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 114 ms 29268 KB Output is correct
2 Correct 121 ms 29276 KB Output is correct
3 Correct 130 ms 28412 KB Output is correct
4 Correct 134 ms 30216 KB Output is correct
5 Correct 162 ms 31708 KB Output is correct
6 Correct 162 ms 31724 KB Output is correct
7 Correct 159 ms 31688 KB Output is correct
8 Correct 155 ms 31820 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 6 ms 7624 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 4 ms 7380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 6 ms 7624 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 4 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 6 ms 7508 KB Output is correct
17 Correct 49 ms 11732 KB Output is correct
18 Correct 47 ms 11988 KB Output is correct
19 Correct 46 ms 11808 KB Output is correct
20 Correct 41 ms 11804 KB Output is correct
21 Correct 41 ms 11860 KB Output is correct
22 Correct 87 ms 16284 KB Output is correct
23 Correct 12 ms 8300 KB Output is correct
24 Correct 36 ms 10304 KB Output is correct
25 Correct 5 ms 7508 KB Output is correct
26 Correct 12 ms 8244 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 6 ms 7624 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 4 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 6 ms 7508 KB Output is correct
17 Correct 49 ms 11732 KB Output is correct
18 Correct 47 ms 11988 KB Output is correct
19 Correct 46 ms 11808 KB Output is correct
20 Correct 41 ms 11804 KB Output is correct
21 Correct 41 ms 11860 KB Output is correct
22 Correct 87 ms 16284 KB Output is correct
23 Correct 12 ms 8300 KB Output is correct
24 Correct 36 ms 10304 KB Output is correct
25 Correct 5 ms 7508 KB Output is correct
26 Correct 12 ms 8244 KB Output is correct
27 Correct 8 ms 8188 KB Output is correct
28 Correct 220 ms 29132 KB Output is correct
29 Correct 317 ms 37616 KB Output is correct
30 Correct 283 ms 36832 KB Output is correct
31 Correct 314 ms 36856 KB Output is correct
32 Correct 290 ms 37624 KB Output is correct
33 Correct 292 ms 37532 KB Output is correct
34 Correct 291 ms 37564 KB Output is correct
35 Correct 123 ms 20016 KB Output is correct
36 Correct 307 ms 38408 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 114 ms 29268 KB Output is correct
2 Correct 121 ms 29276 KB Output is correct
3 Correct 130 ms 28412 KB Output is correct
4 Correct 134 ms 30216 KB Output is correct
5 Correct 162 ms 31708 KB Output is correct
6 Correct 162 ms 31724 KB Output is correct
7 Correct 159 ms 31688 KB Output is correct
8 Correct 155 ms 31820 KB Output is correct
9 Correct 208 ms 38340 KB Output is correct
10 Correct 120 ms 24096 KB Output is correct
11 Correct 244 ms 40856 KB Output is correct
12 Correct 4 ms 7252 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 4 ms 7252 KB Output is correct
15 Correct 4 ms 7252 KB Output is correct
16 Correct 6 ms 7252 KB Output is correct
17 Correct 4 ms 7280 KB Output is correct
18 Correct 115 ms 29216 KB Output is correct
19 Correct 114 ms 29208 KB Output is correct
20 Correct 117 ms 29160 KB Output is correct
21 Correct 119 ms 29168 KB Output is correct
22 Correct 235 ms 38536 KB Output is correct
23 Correct 297 ms 48116 KB Output is correct
24 Correct 281 ms 48512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 178 ms 49756 KB Output is correct
2 Correct 213 ms 55688 KB Output is correct
3 Correct 116 ms 29260 KB Output is correct
4 Correct 117 ms 29268 KB Output is correct
5 Correct 441 ms 73552 KB Output is correct
6 Correct 423 ms 58464 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 268 ms 57384 KB Output is correct
9 Correct 312 ms 65192 KB Output is correct
10 Correct 181 ms 49716 KB Output is correct
11 Correct 220 ms 55612 KB Output is correct
12 Correct 4 ms 7252 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 4 ms 7252 KB Output is correct
15 Correct 4 ms 7252 KB Output is correct
16 Correct 117 ms 29388 KB Output is correct
17 Correct 135 ms 29272 KB Output is correct
18 Correct 183 ms 49716 KB Output is correct
19 Correct 209 ms 55612 KB Output is correct
20 Correct 186 ms 42500 KB Output is correct
21 Correct 208 ms 45944 KB Output is correct
22 Correct 183 ms 42556 KB Output is correct
23 Correct 201 ms 45800 KB Output is correct
24 Correct 114 ms 29268 KB Output is correct
25 Correct 121 ms 29276 KB Output is correct
26 Correct 130 ms 28412 KB Output is correct
27 Correct 134 ms 30216 KB Output is correct
28 Correct 162 ms 31708 KB Output is correct
29 Correct 162 ms 31724 KB Output is correct
30 Correct 159 ms 31688 KB Output is correct
31 Correct 155 ms 31820 KB Output is correct
32 Correct 6 ms 7252 KB Output is correct
33 Correct 4 ms 7252 KB Output is correct
34 Correct 4 ms 7252 KB Output is correct
35 Correct 4 ms 7252 KB Output is correct
36 Correct 4 ms 7252 KB Output is correct
37 Correct 4 ms 7252 KB Output is correct
38 Correct 4 ms 7252 KB Output is correct
39 Correct 4 ms 7252 KB Output is correct
40 Correct 4 ms 7380 KB Output is correct
41 Correct 5 ms 7636 KB Output is correct
42 Correct 4 ms 7380 KB Output is correct
43 Correct 6 ms 7624 KB Output is correct
44 Correct 4 ms 7380 KB Output is correct
45 Correct 4 ms 7380 KB Output is correct
46 Correct 4 ms 7380 KB Output is correct
47 Correct 6 ms 7508 KB Output is correct
48 Correct 49 ms 11732 KB Output is correct
49 Correct 47 ms 11988 KB Output is correct
50 Correct 46 ms 11808 KB Output is correct
51 Correct 41 ms 11804 KB Output is correct
52 Correct 41 ms 11860 KB Output is correct
53 Correct 87 ms 16284 KB Output is correct
54 Correct 12 ms 8300 KB Output is correct
55 Correct 36 ms 10304 KB Output is correct
56 Correct 5 ms 7508 KB Output is correct
57 Correct 12 ms 8244 KB Output is correct
58 Correct 8 ms 8188 KB Output is correct
59 Correct 220 ms 29132 KB Output is correct
60 Correct 317 ms 37616 KB Output is correct
61 Correct 283 ms 36832 KB Output is correct
62 Correct 314 ms 36856 KB Output is correct
63 Correct 290 ms 37624 KB Output is correct
64 Correct 292 ms 37532 KB Output is correct
65 Correct 291 ms 37564 KB Output is correct
66 Correct 123 ms 20016 KB Output is correct
67 Correct 307 ms 38408 KB Output is correct
68 Correct 208 ms 38340 KB Output is correct
69 Correct 120 ms 24096 KB Output is correct
70 Correct 244 ms 40856 KB Output is correct
71 Correct 4 ms 7252 KB Output is correct
72 Correct 4 ms 7252 KB Output is correct
73 Correct 4 ms 7252 KB Output is correct
74 Correct 4 ms 7252 KB Output is correct
75 Correct 6 ms 7252 KB Output is correct
76 Correct 4 ms 7280 KB Output is correct
77 Correct 115 ms 29216 KB Output is correct
78 Correct 114 ms 29208 KB Output is correct
79 Correct 117 ms 29160 KB Output is correct
80 Correct 119 ms 29168 KB Output is correct
81 Correct 235 ms 38536 KB Output is correct
82 Correct 297 ms 48116 KB Output is correct
83 Correct 281 ms 48512 KB Output is correct
84 Correct 455 ms 60288 KB Output is correct
85 Correct 465 ms 62488 KB Output is correct
86 Correct 393 ms 56424 KB Output is correct
87 Correct 415 ms 58536 KB Output is correct
88 Correct 4 ms 7252 KB Output is correct
89 Correct 429 ms 58704 KB Output is correct
90 Correct 427 ms 57444 KB Output is correct
91 Correct 423 ms 57312 KB Output is correct