Submission #627573

# Submission time Handle Problem Language Result Execution time Memory
627573 2022-08-12T17:05:40 Z dqhungdl Catfish Farm (IOI22_fish) C++17
67 / 100
414 ms 73504 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> ii;
const int MAX = 1e5 + 5;
const long long INF = 1e18;
bool markLow[MAX];
vector<ii> g[MAX];
vector<long long> S[MAX];
vector<vector<long long>> f[MAX];

struct FenwickTreeLow {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeLow(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i <= n; i += i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i > 0; i -= i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

struct FenwickTreeHigh {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeHigh(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i > 0; i -= i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i <= n; i += i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

//long long calcCost(int col, int L, int R) {
//    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
//    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, 0)) - g[col].begin() - 1;
//    if (l <= r)
//        return S[col][r] - (l ? S[col][l - 1] : 0);
//    return 0;
//}

long long calcCostLeft(int col, int L) {
    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
    return l ? S[col][l - 1] : 0;
}

long long calcCostRight(int col, int R) {
    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, 0)) - g[col].begin() - 1;
    return r >= 0 ? S[col][r] : 0;
}

long long max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    for (int i = 0; i < M; i++) {
        g[X[i]].emplace_back(Y[i], W[i]);
        if (!Y[i])
            markLow[X[i]] = true;
    }
    for (int i = 0; i < N; i++) {
        if (!markLow[i])
            g[i].emplace_back(0, 0);
        g[i].emplace_back(N, 0);
    }
    for (int i = 0; i < N; i++) {
        sort(g[i].begin(), g[i].end());
        S[i].resize(g[i].size());
        S[i][0] = g[i][0].second;
        for (int j = 1; j < g[i].size(); j++)
            S[i][j] = S[i][j - 1] + g[i][j].second;
        f[i].resize(g[i].size(), vector<long long>(2));
    }
    FenwickTreeLow lowTree(N), lowJump(N);
    FenwickTreeHigh highTree(N), highJump(N);
    long long rs = 0;
    for (int i = 1; i < N; i++) {
        if (i > 1) {
            lowJump.reset(), highJump.reset();
            for (int t = 0; t < g[i - 2].size(); t++) {
                lowJump.update(t, f[i - 2][t][1]);
                highJump.update(t, f[i - 2][t][1] + calcCostRight(i - 1, g[i - 2][t].first));
            }
        }
        lowTree.reset(), highTree.reset();
        for (int t = 0; t < g[i - 1].size(); t++) {
            lowTree.update(t, f[i - 1][t][0] - calcCostLeft(i - 1, g[i - 1][t].first));
            highTree.update(t, f[i - 1][t][1] + calcCostRight(i, g[i - 1][t].first));
        }
        for (int j = 0; j < g[i].size(); j++) {
            if (i > 1) {
                int low = upper_bound(g[i - 2].begin(), g[i - 2].end(), ii(g[i][j].first, INF)) - g[i - 2].begin() - 1;
                long long tmp = lowJump.get(low) + calcCostRight(i - 1, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

                int high = low + 1;
                tmp = highJump.get(high);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

//                for (int t = 0; t < g[i - 2].size(); t++) {
//                    long long tmp = f[i - 2][t][1] + calcCost(i - 1, 0, max(g[i - 2][t].first, g[i][j].first));
//                    f[i][j][0] = max(f[i][j][0], tmp);
//                    f[i][j][1] = max(f[i][j][1], tmp);
//                }
            } else {
                long long tmp = calcCostRight(0, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);
            }

            int low = upper_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, INF)) - g[i - 1].begin() - 1;
            long long tmp = lowTree.get(low) + calcCostRight(i - 1, g[i][j].first);
            f[i][j][0] = max(f[i][j][0], tmp);
            f[i][j][1] = max(f[i][j][1], tmp);

            int high = lower_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, 0)) - g[i - 1].begin();
            f[i][j][1] = max(f[i][j][1], highTree.get(high) - calcCostLeft(i, g[i][j].first));

            rs = max({rs, f[i][j][0], f[i][j][1]});
//            for (int t = 0; t < g[i - 1].size(); t++) {
//                if (g[i - 1][t].first <= g[i][j].first) {
//                    f[i][j][0] = max(f[i][j][0], f[i - 1][t][0] + calcCost(i - 1, g[i - 1][t].first, g[i][j].first));
//                    f[i][j][1] = max(f[i][j][1], f[i - 1][t][0] + calcCost(i - 1, g[i - 1][t].first, g[i][j].first));
//                }
//                if (g[i - 1][t].first >= g[i][j].first)
//                    f[i][j][1] = max(f[i][j][1], f[i - 1][t][1] + calcCost(i, g[i][j].first, g[i - 1][t].first));
//            }
        }
    }
    return rs;
}

//int main() {
//    freopen("../_input", "r", stdin);
//    int N, M;
//    assert(2 == scanf("%d %d", &N, &M));
//
//    std::vector<int> X(M), Y(M), W(M);
//    for (int i = 0; i < M; ++i) {
//        assert(3 == scanf("%d %d %d", &X[i], &Y[i], &W[i]));
//    }
//
//    long long result = max_weights(N, M, X, Y, W);
//    printf("%lld\n", result);
//    return 0;
//}

Compilation message

fish.cpp: In function 'long long int max_weights(int, int, std::vector<int>, std::vector<int>, std::vector<int>)':
fish.cpp:112:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  112 |         for (int j = 1; j < g[i].size(); j++)
      |                         ~~^~~~~~~~~~~~~
fish.cpp:122:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  122 |             for (int t = 0; t < g[i - 2].size(); t++) {
      |                             ~~^~~~~~~~~~~~~~~~~
fish.cpp:128:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  128 |         for (int t = 0; t < g[i - 1].size(); t++) {
      |                         ~~^~~~~~~~~~~~~~~~~
fish.cpp:132:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  132 |         for (int j = 0; j < g[i].size(); j++) {
      |                         ~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 172 ms 49704 KB Output is correct
2 Correct 200 ms 55728 KB Output is correct
3 Correct 115 ms 29204 KB Output is correct
4 Correct 113 ms 29272 KB Output is correct
5 Correct 390 ms 73504 KB Output is correct
6 Correct 414 ms 58484 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 269 ms 57380 KB Output is correct
3 Correct 309 ms 65080 KB Output is correct
4 Correct 184 ms 49704 KB Output is correct
5 Correct 197 ms 55688 KB Output is correct
6 Correct 5 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 3 ms 7252 KB Output is correct
9 Correct 4 ms 7252 KB Output is correct
10 Correct 114 ms 29308 KB Output is correct
11 Correct 113 ms 29364 KB Output is correct
12 Correct 178 ms 49764 KB Output is correct
13 Correct 207 ms 55680 KB Output is correct
14 Correct 179 ms 42576 KB Output is correct
15 Correct 206 ms 45912 KB Output is correct
16 Correct 178 ms 42544 KB Output is correct
17 Correct 197 ms 45876 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 115 ms 29160 KB Output is correct
2 Correct 118 ms 29268 KB Output is correct
3 Correct 123 ms 28380 KB Output is correct
4 Correct 130 ms 30216 KB Output is correct
5 Correct 153 ms 31692 KB Output is correct
6 Correct 149 ms 31700 KB Output is correct
7 Correct 151 ms 31608 KB Output is correct
8 Correct 158 ms 31728 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 3 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 5 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7360 KB Output is correct
10 Correct 6 ms 7508 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 3 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 3 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 5 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7360 KB Output is correct
10 Correct 6 ms 7508 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 3 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 6 ms 7508 KB Output is correct
17 Correct 49 ms 11872 KB Output is correct
18 Correct 46 ms 11980 KB Output is correct
19 Correct 42 ms 11860 KB Output is correct
20 Correct 42 ms 11860 KB Output is correct
21 Correct 41 ms 11896 KB Output is correct
22 Correct 84 ms 16356 KB Output is correct
23 Correct 11 ms 8236 KB Output is correct
24 Correct 31 ms 10324 KB Output is correct
25 Correct 6 ms 7508 KB Output is correct
26 Correct 11 ms 8148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 3 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 5 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7360 KB Output is correct
10 Correct 6 ms 7508 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 3 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 6 ms 7508 KB Output is correct
17 Correct 49 ms 11872 KB Output is correct
18 Correct 46 ms 11980 KB Output is correct
19 Correct 42 ms 11860 KB Output is correct
20 Correct 42 ms 11860 KB Output is correct
21 Correct 41 ms 11896 KB Output is correct
22 Correct 84 ms 16356 KB Output is correct
23 Correct 11 ms 8236 KB Output is correct
24 Correct 31 ms 10324 KB Output is correct
25 Correct 6 ms 7508 KB Output is correct
26 Correct 11 ms 8148 KB Output is correct
27 Correct 8 ms 8148 KB Output is correct
28 Correct 215 ms 29088 KB Output is correct
29 Correct 313 ms 37540 KB Output is correct
30 Correct 287 ms 36724 KB Output is correct
31 Correct 289 ms 36860 KB Output is correct
32 Incorrect 283 ms 37760 KB 1st lines differ - on the 1st token, expected: '99669450104468', found: '99667954366631'
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 115 ms 29160 KB Output is correct
2 Correct 118 ms 29268 KB Output is correct
3 Correct 123 ms 28380 KB Output is correct
4 Correct 130 ms 30216 KB Output is correct
5 Correct 153 ms 31692 KB Output is correct
6 Correct 149 ms 31700 KB Output is correct
7 Correct 151 ms 31608 KB Output is correct
8 Correct 158 ms 31728 KB Output is correct
9 Correct 202 ms 38308 KB Output is correct
10 Correct 113 ms 24024 KB Output is correct
11 Correct 254 ms 40780 KB Output is correct
12 Correct 3 ms 7252 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 3 ms 7280 KB Output is correct
15 Correct 3 ms 7252 KB Output is correct
16 Correct 4 ms 7252 KB Output is correct
17 Correct 4 ms 7252 KB Output is correct
18 Correct 117 ms 29220 KB Output is correct
19 Correct 113 ms 29368 KB Output is correct
20 Correct 116 ms 29272 KB Output is correct
21 Correct 114 ms 29276 KB Output is correct
22 Correct 235 ms 38440 KB Output is correct
23 Correct 286 ms 48108 KB Output is correct
24 Correct 285 ms 48612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 172 ms 49704 KB Output is correct
2 Correct 200 ms 55728 KB Output is correct
3 Correct 115 ms 29204 KB Output is correct
4 Correct 113 ms 29272 KB Output is correct
5 Correct 390 ms 73504 KB Output is correct
6 Correct 414 ms 58484 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 269 ms 57380 KB Output is correct
9 Correct 309 ms 65080 KB Output is correct
10 Correct 184 ms 49704 KB Output is correct
11 Correct 197 ms 55688 KB Output is correct
12 Correct 5 ms 7252 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 3 ms 7252 KB Output is correct
15 Correct 4 ms 7252 KB Output is correct
16 Correct 114 ms 29308 KB Output is correct
17 Correct 113 ms 29364 KB Output is correct
18 Correct 178 ms 49764 KB Output is correct
19 Correct 207 ms 55680 KB Output is correct
20 Correct 179 ms 42576 KB Output is correct
21 Correct 206 ms 45912 KB Output is correct
22 Correct 178 ms 42544 KB Output is correct
23 Correct 197 ms 45876 KB Output is correct
24 Correct 115 ms 29160 KB Output is correct
25 Correct 118 ms 29268 KB Output is correct
26 Correct 123 ms 28380 KB Output is correct
27 Correct 130 ms 30216 KB Output is correct
28 Correct 153 ms 31692 KB Output is correct
29 Correct 149 ms 31700 KB Output is correct
30 Correct 151 ms 31608 KB Output is correct
31 Correct 158 ms 31728 KB Output is correct
32 Correct 4 ms 7252 KB Output is correct
33 Correct 4 ms 7252 KB Output is correct
34 Correct 3 ms 7252 KB Output is correct
35 Correct 4 ms 7252 KB Output is correct
36 Correct 5 ms 7252 KB Output is correct
37 Correct 4 ms 7252 KB Output is correct
38 Correct 4 ms 7252 KB Output is correct
39 Correct 4 ms 7252 KB Output is correct
40 Correct 4 ms 7360 KB Output is correct
41 Correct 6 ms 7508 KB Output is correct
42 Correct 4 ms 7380 KB Output is correct
43 Correct 5 ms 7508 KB Output is correct
44 Correct 3 ms 7380 KB Output is correct
45 Correct 5 ms 7380 KB Output is correct
46 Correct 4 ms 7380 KB Output is correct
47 Correct 6 ms 7508 KB Output is correct
48 Correct 49 ms 11872 KB Output is correct
49 Correct 46 ms 11980 KB Output is correct
50 Correct 42 ms 11860 KB Output is correct
51 Correct 42 ms 11860 KB Output is correct
52 Correct 41 ms 11896 KB Output is correct
53 Correct 84 ms 16356 KB Output is correct
54 Correct 11 ms 8236 KB Output is correct
55 Correct 31 ms 10324 KB Output is correct
56 Correct 6 ms 7508 KB Output is correct
57 Correct 11 ms 8148 KB Output is correct
58 Correct 8 ms 8148 KB Output is correct
59 Correct 215 ms 29088 KB Output is correct
60 Correct 313 ms 37540 KB Output is correct
61 Correct 287 ms 36724 KB Output is correct
62 Correct 289 ms 36860 KB Output is correct
63 Incorrect 283 ms 37760 KB 1st lines differ - on the 1st token, expected: '99669450104468', found: '99667954366631'
64 Halted 0 ms 0 KB -