Submission #627198

# Submission time Handle Problem Language Result Execution time Memory
627198 2022-08-12T11:19:49 Z model_code Digital Circuit (IOI22_circuit) C++17
100 / 100
1402 ms 23608 KB
// correct/solution-jonathanirvings.cpp
#include "circuit.h"

#include <bits/stdc++.h>
using namespace std;

#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_BITOP_HPP

#ifndef ATCODER_LAZYSEGTREE_HPP
#define ATCODER_LAZYSEGTREE_HPP 1

#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>

namespace atcoder {

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

}  // namespace atcoder

#endif  // ATCODER_LAZYSEGTREE_HPP

template <int Mod>
struct ModInt {
  
  ModInt() : num_(0) {}

  template <class T>
  ModInt(T num) {
    long long x = (long long)(num % (long long)(Mod));
    if (x < 0) x += Mod;
    num_ = (int)(x);
  }

  ModInt& operator++() {
    num_++;
    if (num_ == Mod) num_ = 0;
    return *this;
  }
  ModInt& operator--() {
    if (num_ == 0) num_ = Mod;
    num_--;
    return *this;
  }
  ModInt operator++(int) {
    ModInt result = *this;
    ++*this;
    return result;
  }
  ModInt operator--(int) {
    ModInt result = *this;
    --*this;
    return result;
  }

  ModInt& operator+=(const ModInt& rhs) {
    num_ += rhs.num_;
    if (num_ >= Mod) num_ -= Mod;
    return *this;
  }
  ModInt& operator-=(const ModInt& rhs) {
    num_ -= rhs.num_;
    if (num_ < 0) num_ += Mod;
    return *this;
  }
  ModInt& operator*=(const ModInt& rhs) {
    long long z = num_;
    z *= rhs.num_;
    num_ = (int)(z % Mod);
    return *this;
  }
  ModInt& operator/=(const ModInt& rhs) { return *this = *this * rhs.inv(); }

  ModInt operator+() const { return *this; }
  ModInt operator-() const { return ModInt() - *this; }

  ModInt pow(long long n) const {
    assert(0 <= n);
    ModInt x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  ModInt inv() const {
    return pow(Mod - 2);
  }
 
  friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {
    return ModInt(lhs) += rhs;
  }
  friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {
    return ModInt(lhs) -= rhs;
  }
  friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {
    return ModInt(lhs) *= rhs;
  }
  friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {
    return ModInt(lhs) /= rhs;
  }
  friend bool operator==(const ModInt& lhs, const ModInt& rhs) {
    return lhs.num_ == rhs.num_;
  }
  friend bool operator!=(const ModInt& lhs, const ModInt& rhs) {
    return lhs.num_ != rhs.num_;
  }

  int get() const { return num_; }
 
  int num_;
};

using Int = ModInt<1'000'002'022>;
using Node = pair<Int, Int>;
using Change = bool;

Node merge(Node a, Node b) {
  return make_pair(a.first + b.first, a.second + b.second);
}

Node e() {
  return make_pair(0, 0);
}

Node apply(Change change, Node node) {
  if (change) {
    node.first = node.second - node.first;
  }
  return node;
}

Change compose(Change f, Change g) {
  return f ^ g;
}

Change id() {
  return false;
}

using ContributionSegTree = atcoder::lazy_segtree<
    Node, merge, e, Change, apply, compose, id>;

int N;
ContributionSegTree* segtree;

void init(int _N, int M, vector<int> P, vector<int> A) {
  N = _N;
  vector<vector<int>> child(N);
  for (int i = 1; i < N + M; ++i) {
    child[P[i]].push_back(i);
  }

  vector<Int> contribution(M);

  vector<Int> subtree(N + M, 1), subtree_left(N + M), subtree_right(N + M);
  function<void (int)> compute_subtree = [&] (int u) {
    if (u >= N) {
      return;
    }
    subtree[u] = child[u].size();
    for (int v : child[u]) {
      compute_subtree(v);
      subtree[u] *= subtree[v];
    }
    for (int i = 0; i < static_cast<int>(child[u].size()); ++i) {
      subtree_left[child[u][i]] = subtree[child[u][i]];
      if (i > 0) {
        subtree_left[child[u][i]] *= subtree_left[child[u][i - 1]];
      }
    }
    for (int i = static_cast<int>(child[u].size()) - 1; i >= 0; --i) {
      subtree_right[child[u][i]] = subtree[child[u][i]];
      if (i + 1 < static_cast<int>(child[u].size())) {
        subtree_right[child[u][i]] *= subtree_right[child[u][i + 1]];
      }
    }
    return;
  };
  compute_subtree(0);

  function<void (int, Int)> compute_contribution = [&] (int u, Int current) {
    if (u >= N) {
      contribution[u - N] = current;
      return;
    }
    for (int i = 0; i < static_cast<int>(child[u].size()); ++i) {
      Int nxt = current;
      if (i > 0) {
        nxt *= subtree_left[child[u][i - 1]];
      }
      if (i + 1 < static_cast<int>(child[u].size())) {
        nxt *= subtree_right[child[u][i + 1]];
      }
      compute_contribution(child[u][i], nxt);
    }
  };
  compute_contribution(0, 1);

  segtree = new ContributionSegTree(M);
  for (int i = 0; i < M; ++i) {
    segtree->set(i, make_pair(A[i] * contribution[i], contribution[i]));
  }
}

int count_ways(int L, int R) {
  segtree->apply(L - N, R - N + 1, true);
  return segtree->all_prod().first.get();
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 256 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 2 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 336 KB Output is correct
10 Correct 2 ms 512 KB Output is correct
11 Correct 2 ms 464 KB Output is correct
12 Correct 1 ms 336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 208 KB Output is correct
10 Correct 1 ms 256 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 336 KB Output is correct
15 Correct 2 ms 336 KB Output is correct
16 Correct 1 ms 336 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 2 ms 512 KB Output is correct
19 Correct 2 ms 464 KB Output is correct
20 Correct 1 ms 336 KB Output is correct
21 Correct 2 ms 336 KB Output is correct
22 Correct 1 ms 336 KB Output is correct
23 Correct 1 ms 384 KB Output is correct
24 Correct 1 ms 336 KB Output is correct
25 Correct 1 ms 336 KB Output is correct
26 Correct 2 ms 364 KB Output is correct
27 Correct 1 ms 336 KB Output is correct
28 Correct 2 ms 336 KB Output is correct
29 Correct 1 ms 336 KB Output is correct
30 Correct 1 ms 368 KB Output is correct
31 Correct 1 ms 512 KB Output is correct
32 Correct 1 ms 384 KB Output is correct
33 Correct 1 ms 336 KB Output is correct
34 Correct 1 ms 384 KB Output is correct
35 Correct 1 ms 384 KB Output is correct
36 Correct 2 ms 500 KB Output is correct
37 Correct 1 ms 464 KB Output is correct
38 Correct 1 ms 464 KB Output is correct
39 Correct 1 ms 336 KB Output is correct
40 Correct 1 ms 336 KB Output is correct
41 Correct 1 ms 372 KB Output is correct
42 Correct 1 ms 336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 645 ms 4520 KB Output is correct
2 Correct 1355 ms 8740 KB Output is correct
3 Correct 1105 ms 8772 KB Output is correct
4 Correct 1125 ms 8688 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 645 ms 4520 KB Output is correct
2 Correct 1355 ms 8740 KB Output is correct
3 Correct 1105 ms 8772 KB Output is correct
4 Correct 1125 ms 8688 KB Output is correct
5 Correct 868 ms 4528 KB Output is correct
6 Correct 888 ms 8776 KB Output is correct
7 Correct 988 ms 8784 KB Output is correct
8 Correct 1018 ms 8744 KB Output is correct
9 Correct 479 ms 464 KB Output is correct
10 Correct 1116 ms 768 KB Output is correct
11 Correct 790 ms 720 KB Output is correct
12 Correct 961 ms 756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 256 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 2 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 336 KB Output is correct
10 Correct 2 ms 512 KB Output is correct
11 Correct 2 ms 464 KB Output is correct
12 Correct 1 ms 336 KB Output is correct
13 Correct 645 ms 4520 KB Output is correct
14 Correct 1355 ms 8740 KB Output is correct
15 Correct 1105 ms 8772 KB Output is correct
16 Correct 1125 ms 8688 KB Output is correct
17 Correct 868 ms 4528 KB Output is correct
18 Correct 888 ms 8776 KB Output is correct
19 Correct 988 ms 8784 KB Output is correct
20 Correct 1018 ms 8744 KB Output is correct
21 Correct 479 ms 464 KB Output is correct
22 Correct 1116 ms 768 KB Output is correct
23 Correct 790 ms 720 KB Output is correct
24 Correct 961 ms 756 KB Output is correct
25 Correct 1188 ms 13472 KB Output is correct
26 Correct 1260 ms 13696 KB Output is correct
27 Correct 999 ms 13620 KB Output is correct
28 Correct 1018 ms 13692 KB Output is correct
29 Correct 1108 ms 23076 KB Output is correct
30 Correct 972 ms 23100 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 208 KB Output is correct
10 Correct 1 ms 256 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 336 KB Output is correct
15 Correct 2 ms 336 KB Output is correct
16 Correct 1 ms 336 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 2 ms 512 KB Output is correct
19 Correct 2 ms 464 KB Output is correct
20 Correct 1 ms 336 KB Output is correct
21 Correct 2 ms 336 KB Output is correct
22 Correct 1 ms 336 KB Output is correct
23 Correct 1 ms 384 KB Output is correct
24 Correct 1 ms 336 KB Output is correct
25 Correct 1 ms 336 KB Output is correct
26 Correct 2 ms 364 KB Output is correct
27 Correct 1 ms 336 KB Output is correct
28 Correct 2 ms 336 KB Output is correct
29 Correct 1 ms 336 KB Output is correct
30 Correct 1 ms 368 KB Output is correct
31 Correct 1 ms 512 KB Output is correct
32 Correct 1 ms 384 KB Output is correct
33 Correct 1 ms 336 KB Output is correct
34 Correct 1 ms 384 KB Output is correct
35 Correct 1 ms 384 KB Output is correct
36 Correct 2 ms 500 KB Output is correct
37 Correct 1 ms 464 KB Output is correct
38 Correct 1 ms 464 KB Output is correct
39 Correct 1 ms 336 KB Output is correct
40 Correct 1 ms 336 KB Output is correct
41 Correct 1 ms 372 KB Output is correct
42 Correct 1 ms 336 KB Output is correct
43 Correct 688 ms 612 KB Output is correct
44 Correct 553 ms 764 KB Output is correct
45 Correct 918 ms 720 KB Output is correct
46 Correct 1128 ms 1044 KB Output is correct
47 Correct 1090 ms 976 KB Output is correct
48 Correct 872 ms 976 KB Output is correct
49 Correct 1200 ms 976 KB Output is correct
50 Correct 936 ms 976 KB Output is correct
51 Correct 951 ms 592 KB Output is correct
52 Correct 878 ms 592 KB Output is correct
53 Correct 838 ms 1104 KB Output is correct
54 Correct 1055 ms 976 KB Output is correct
55 Correct 1127 ms 748 KB Output is correct
56 Correct 1188 ms 756 KB Output is correct
57 Correct 1109 ms 592 KB Output is correct
58 Correct 1124 ms 1360 KB Output is correct
59 Correct 1260 ms 1488 KB Output is correct
60 Correct 806 ms 1488 KB Output is correct
61 Correct 1082 ms 848 KB Output is correct
62 Correct 1167 ms 592 KB Output is correct
63 Correct 1102 ms 592 KB Output is correct
64 Correct 755 ms 592 KB Output is correct
65 Correct 482 ms 464 KB Output is correct
66 Correct 1010 ms 720 KB Output is correct
67 Correct 1056 ms 768 KB Output is correct
68 Correct 876 ms 720 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 208 KB Output is correct
10 Correct 1 ms 256 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 336 KB Output is correct
15 Correct 2 ms 336 KB Output is correct
16 Correct 1 ms 336 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 2 ms 512 KB Output is correct
19 Correct 2 ms 464 KB Output is correct
20 Correct 1 ms 336 KB Output is correct
21 Correct 2 ms 336 KB Output is correct
22 Correct 1 ms 336 KB Output is correct
23 Correct 1 ms 384 KB Output is correct
24 Correct 1 ms 336 KB Output is correct
25 Correct 1 ms 336 KB Output is correct
26 Correct 2 ms 364 KB Output is correct
27 Correct 1 ms 336 KB Output is correct
28 Correct 2 ms 336 KB Output is correct
29 Correct 1 ms 336 KB Output is correct
30 Correct 1 ms 368 KB Output is correct
31 Correct 1 ms 512 KB Output is correct
32 Correct 1 ms 384 KB Output is correct
33 Correct 1 ms 336 KB Output is correct
34 Correct 1 ms 384 KB Output is correct
35 Correct 1 ms 384 KB Output is correct
36 Correct 2 ms 500 KB Output is correct
37 Correct 1 ms 464 KB Output is correct
38 Correct 1 ms 464 KB Output is correct
39 Correct 1 ms 336 KB Output is correct
40 Correct 1 ms 336 KB Output is correct
41 Correct 1 ms 372 KB Output is correct
42 Correct 1 ms 336 KB Output is correct
43 Correct 645 ms 4520 KB Output is correct
44 Correct 1355 ms 8740 KB Output is correct
45 Correct 1105 ms 8772 KB Output is correct
46 Correct 1125 ms 8688 KB Output is correct
47 Correct 868 ms 4528 KB Output is correct
48 Correct 888 ms 8776 KB Output is correct
49 Correct 988 ms 8784 KB Output is correct
50 Correct 1018 ms 8744 KB Output is correct
51 Correct 479 ms 464 KB Output is correct
52 Correct 1116 ms 768 KB Output is correct
53 Correct 790 ms 720 KB Output is correct
54 Correct 961 ms 756 KB Output is correct
55 Correct 1188 ms 13472 KB Output is correct
56 Correct 1260 ms 13696 KB Output is correct
57 Correct 999 ms 13620 KB Output is correct
58 Correct 1018 ms 13692 KB Output is correct
59 Correct 1108 ms 23076 KB Output is correct
60 Correct 972 ms 23100 KB Output is correct
61 Correct 688 ms 612 KB Output is correct
62 Correct 553 ms 764 KB Output is correct
63 Correct 918 ms 720 KB Output is correct
64 Correct 1128 ms 1044 KB Output is correct
65 Correct 1090 ms 976 KB Output is correct
66 Correct 872 ms 976 KB Output is correct
67 Correct 1200 ms 976 KB Output is correct
68 Correct 936 ms 976 KB Output is correct
69 Correct 951 ms 592 KB Output is correct
70 Correct 878 ms 592 KB Output is correct
71 Correct 838 ms 1104 KB Output is correct
72 Correct 1055 ms 976 KB Output is correct
73 Correct 1127 ms 748 KB Output is correct
74 Correct 1188 ms 756 KB Output is correct
75 Correct 1109 ms 592 KB Output is correct
76 Correct 1124 ms 1360 KB Output is correct
77 Correct 1260 ms 1488 KB Output is correct
78 Correct 806 ms 1488 KB Output is correct
79 Correct 1082 ms 848 KB Output is correct
80 Correct 1167 ms 592 KB Output is correct
81 Correct 1102 ms 592 KB Output is correct
82 Correct 755 ms 592 KB Output is correct
83 Correct 482 ms 464 KB Output is correct
84 Correct 1010 ms 720 KB Output is correct
85 Correct 1056 ms 768 KB Output is correct
86 Correct 876 ms 720 KB Output is correct
87 Correct 1 ms 256 KB Output is correct
88 Correct 703 ms 12592 KB Output is correct
89 Correct 1088 ms 9040 KB Output is correct
90 Correct 874 ms 8536 KB Output is correct
91 Correct 1010 ms 13888 KB Output is correct
92 Correct 1276 ms 13748 KB Output is correct
93 Correct 1402 ms 13724 KB Output is correct
94 Correct 1343 ms 13788 KB Output is correct
95 Correct 1086 ms 13748 KB Output is correct
96 Correct 1016 ms 6700 KB Output is correct
97 Correct 1114 ms 6696 KB Output is correct
98 Correct 1143 ms 16996 KB Output is correct
99 Correct 1175 ms 13736 KB Output is correct
100 Correct 1008 ms 9968 KB Output is correct
101 Correct 1158 ms 8644 KB Output is correct
102 Correct 1171 ms 6760 KB Output is correct
103 Correct 1351 ms 23076 KB Output is correct
104 Correct 1113 ms 23592 KB Output is correct
105 Correct 1161 ms 23608 KB Output is correct
106 Correct 880 ms 10704 KB Output is correct
107 Correct 1230 ms 7952 KB Output is correct
108 Correct 1159 ms 7704 KB Output is correct
109 Correct 854 ms 6796 KB Output is correct