제출 #626159

#제출 시각아이디문제언어결과실행 시간메모리
626159I_love_Hoang_Yen메기 농장 (IOI22_fish)C++17
100 / 100
618 ms155956 KiB
#include "bits/stdc++.h" using namespace std; #define int long long #define i_1 jakcjacjl struct Fish { int col, row; int weight; }; bool operator < (const Fish& a, const Fish& b) { if (a.col != b.col) return a.col < b.col; return a.row < b.row; } void upMax(int& f, int val) { if (val > f) f = val; } // sub1 - 3 {{{ // fishes are on even columns -> build piers on odd columns // & catch all fishes int sub1(const std::vector<Fish>& fishes) { int res = 0; for (const auto& fish : fishes) { res += fish.weight; } return res; } // fishes are on first 2 columns int sub2(int n, const std::vector<Fish>& fishes) { std::vector<int> zeroes(n); // prefix sum of fish weights at column == 0 std::vector<int> ones(n); // prefix sum of fish weights at column == 1 for (const auto& fish : fishes) { if (fish.col == 0) zeroes[fish.row] += fish.weight; if (fish.col == 1) ones[fish.row] += fish.weight; } std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin()); std::partial_sum(ones.begin(), ones.end(), ones.begin()); int res = ones.back(); // init: only catch fishes at column == 1 for (int i = 0; i < n; ++i) { // build pier until at column 1, row 0-i if (n == 2) upMax(res, zeroes[i]); else upMax(res, zeroes[i] + ones.back() - ones[i]); } return res; } // all fishes are on row == 0 int sub3(int n, const std::vector<Fish>& fishes) { std::vector<int> weights(n); // weights[i] = weight of fish at column i for (const auto& fish : fishes) { weights[fish.col] += fish.weight; } // f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i // i-4 i-3 i-2 i-1 i std::vector<int> f(n); f[0] = 0; for (int i = 1; i < n; ++i) { f[i] = std::max(f[i-1], weights[i-1]); if (i >= 2) { upMax(f[i], f[i-2] + weights[i-1]); } if (i >= 3) { upMax(f[i], f[i-3] + weights[i-2] + weights[i-1]); } } int res = 0; for (int i = 0; i < n; ++i) { int cur = f[i]; if (i + 1 < n) cur += weights[i+1]; upMax(res, cur); } return res; } // }}} // sub 5 N <= 300 {{{ int sub5(int n, const std::vector<Fish>& fishes) { // Init weights[i][j] = sum of fish on column i, from row 0 -> row j std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0)); for (const auto& fish : fishes) { weights[fish.col][fish.row] += fish.weight; } for (int col = 0; col < n; ++col) { std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin()); } // f[c][r] = best strategy if we last BUILD PIER AT column c, row r // only considering fishes <= (c, r) // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1] std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)), g(n, std::vector<int> (n, 0)); // f <= g for (int c = 1; c < n; ++c) { for (int r = 0; r < n; ++r) { // this is first pier f[c][r] = g[c][r] = weights[c-1][r]; // last pier at column i-1 for (int lastRow = 0; lastRow < n; ++lastRow) { if (lastRow <= r) { int cur = std::max( f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow], g[c-1][lastRow]); upMax(f[c][r], cur); upMax(g[c][r], cur); } else { upMax(f[c][r], g[c-1][lastRow]); upMax(g[c][r], g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]); } } // last pier at column i-2 if (c >= 2) { for (int lastRow = 0; lastRow < n; ++lastRow) { int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)]; upMax(f[c][r], cur); upMax(g[c][r], cur); } } // last pier at column i-3 if (c >= 3) { for (int lastRow = 0; lastRow < n; ++lastRow) { int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r]; upMax(f[c][r], cur); upMax(g[c][r], cur); } } } } int res = 0; for (int c = 0; c < n; ++c) { for (int r = 0; r < n; ++r) { assert(g[c][r] >= f[c][r]); int cur = g[c][r]; if (c + 1 < n) { cur += weights[c+1][r]; } upMax(res, cur); } } return res; } // }}} // SegTree, copied from AtCoder library {{{ // AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html // // Notes: // - Index of elements from 0 -> n-1 // - Range queries are [l, r-1] // // Tested: // - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j // - https://oj.vnoi.info/problem/gss // - https://oj.vnoi.info/problem/nklineup // - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr // - https://judge.yosupo.jp/problem/point_add_range_sum // - https://judge.yosupo.jp/problem/point_set_range_composite int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } template< class T, // data type for nodes T (*op) (T, T), // operator to combine 2 nodes T (*e)() // identity element > struct SegTree { SegTree() : SegTree(0) {} explicit SegTree(int n) : SegTree(vector<T> (n, e())) {} explicit SegTree(const vector<T>& v) : _n((int) v.size()) { log = ceil_pow2(_n); size = 1<<log; d = vector<T> (2*size, e()); for (int i = 0; i < _n; i++) d[size+i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } // 0 <= p < n void set(int p, T x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } // 0 <= p < n T get(int p) const { assert(0 <= p && p < _n); return d[p + size]; } // Get product in range [l, r-1] // 0 <= l <= r <= n // For empty segment (l == r) -> return e() T prod(int l, int r) const { assert(0 <= l && l <= r && r <= _n); T sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } T all_prod() const { return d[1]; } // Binary search on SegTree to find largest r: // f(op(a[l] .. a[r-1])) = true (assuming empty array is always true) // f(op(a[l] .. a[r])) = false (assuming op(..., a[n]), which is out of bound, is always false) template <bool (*f)(T)> int max_right(int l) const { return max_right(l, [](T x) { return f(x); }); } template <class F> int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; T sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } // Binary search on SegTree to find smallest l: // f(op(a[l] .. a[r-1])) = true (assuming empty array is always true) // f(op(a[l-1] .. a[r-1])) = false (assuming op(a[-1], ..), which is out of bound, is always false) template <bool (*f)(T)> int min_left(int r) const { return min_left(r, [](T x) { return f(x); }); } template <class F> int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; T sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } int _n, size, log; vector<T> d; void update(int k) { d[k] = op(d[2*k], d[2*k+1]); } }; // }}} // SegTree examples {{{ // Examples: Commonly used SegTree ops: max / min / sum struct MaxSegTreeOp { static int op(int x, int y) { return max(x, y); } static int e() { return INT_MIN; } }; struct MinSegTreeOp { static int op(int x, int y) { return min(x, y); } static int e() { return INT_MAX; } }; struct SumSegTreeOp { static long long op(long long x, long long y) { return x + y; } static long long e() { return 0; } }; // Example // SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e> seg_tree(a); // SegTree<int, MinSegTreeOp::op, MinSegTreeOp::e> seg_tree(a); // }}} // AC {{{ int sub7(int n, const std::vector<Fish>& fishes) { std::vector<std::vector<int>> rows(n); // rows[c] = important coordinates at col c std::vector<std::vector<int>> weights(n); // prefix sum of weights std::vector<std::vector<std::pair<int,int>>> fishesAt(n); // stores {row, weight} for (const auto& fish : fishes) { int c = fish.col; rows[c].push_back(fish.row); if (c > 0) rows[c-1].push_back(fish.row); if (c + 1 < n) rows[c+1].push_back(fish.row); fishesAt[c].push_back({fish.row, fish.weight}); } for (int c = 0; c < n; ++c) { rows[c].push_back(-1); std::sort(rows[c].begin(), rows[c].end()); rows[c].erase(std::unique(rows[c].begin(), rows[c].end()), rows[c].end()); std::sort(fishesAt[c].begin(), fishesAt[c].end()); weights[c].resize(rows[c].size()); int fish_id = 0; for (int i = 0; i < (int) rows[c].size(); ++i) { if (i > 0) weights[c][i] = weights[c][i-1]; while (fish_id < (int) fishesAt[c].size() && fishesAt[c][fish_id].first <= rows[c][i]) { weights[c][i] += fishesAt[c][fish_id].second; ++fish_id; } } } // f[c][r] = best strategy if we last BUILD PIER AT column c, row r // only considering fishes <= (c, r) // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1] std::vector<std::vector<int>> f(n), g(n); std::vector<SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e>> st_g(n), st_g_with_next_col(n), st_f_with_next_col(n); for (int c = 0; c < n; ++c) { int sz = static_cast<int> (rows[c].size()); f[c] = g[c] = std::vector<int> (sz, 0); // compute {{{ if (c > 0) { for (int i = 0; i < sz; ++i) { int i_1 = std::upper_bound(rows[c-1].begin(), rows[c-1].end(), rows[c][i]) - rows[c-1].begin() - 1; // this is first pier f[c][i] = weights[c-1][i_1]; // last pier at column i-3 if (c >= 3) { upMax(f[c][i], st_g_with_next_col[c-3].all_prod() + weights[c-1][i_1]); } // last pier at column i-2 if (c >= 2) { upMax(f[c][i], std::max( st_g[c-2].all_prod() + weights[c-1][i_1], st_g_with_next_col[c-2].all_prod())); } g[c][i] = f[c][i]; // last pier at column i-1 if (c >= 1) { // last row <= r int cur = std::max( st_g[c-1].prod(0, i_1+1), st_f_with_next_col[c-1].prod(0, i_1+1) + weights[c-1][i_1]); upMax(f[c][i], cur); upMax(g[c][i], cur); // last row > r upMax(f[c][i], st_g[c-1].prod(i_1+1, (int) g[c-1].size())); upMax(g[c][i], st_g_with_next_col[c-1].prod(i_1+1, (int) g[c-1].size()) - weights[c][i]); } } } // }}} // aggregate {{{ st_g[c] = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e> (g[c]); if (c + 1 < n) { std::vector<int> g_with_next_col(sz), f_with_next_col(sz); for (int i = 0; i < sz; ++i) { int i_1 = std::upper_bound(rows[c+1].begin(), rows[c+1].end(), rows[c][i]) - rows[c+1].begin() - 1; g_with_next_col[i] = g[c][i] + weights[c+1][i_1]; f_with_next_col[i] = f[c][i] - weights[c][i]; } st_g_with_next_col[c] = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e> (g_with_next_col); st_f_with_next_col[c] = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e> (f_with_next_col); } // }}} } int res = 0; for (int c = 0; c < n; ++c) { int sz = rows[c].size(); for (int i = 0; i < sz; ++i) { int cur = g[c][i]; if (c + 1 < n) { int i_1 = std::upper_bound(rows[c+1].begin(), rows[c+1].end(), rows[c][i]) - rows[c+1].begin() - 1; cur += weights[c+1][i_1]; } upMax(res, cur); } } return res; } // }}} #undef int long long max_weights( int n, int nFish, std::vector<int> xs, std::vector<int> ys, std::vector<int> ws) { std::vector<Fish> fishes; for (int i = 0; i < nFish; ++i) { fishes.push_back({xs[i], ys[i], ws[i]}); } if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) { return sub1(fishes); } if (*std::max_element(xs.begin(), xs.end()) <= 1) { return sub2(n, fishes); } if (*std::max_element(ys.begin(), ys.end()) == 0) { return sub3(n, fishes); } return sub7(n, fishes); }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...