답안 #626149

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
626149 2022-08-11T09:04:36 Z I_love_Hoang_Yen 메기 농장 (IOI22_fish) C++17
100 / 100
831 ms 360284 KB
#include "bits/stdc++.h"
using namespace std;

#define int long long
#define i_1 jakcjacjl
struct Fish {
    int col, row;
    int weight;
};
bool operator < (const Fish& a, const Fish& b) {
    if (a.col != b.col) return a.col < b.col;
    return a.row < b.row;
}

void upMax(int& f, int val) {
    if (val > f) f = val;
}

// sub1 - 3 {{{
// fishes are on even columns -> build piers on odd columns
// & catch all fishes
int sub1(const std::vector<Fish>& fishes) {
    int res = 0;
    for (const auto& fish : fishes) {
        res += fish.weight;
    }
    return res;
}

// fishes are on first 2 columns
int sub2(int n, const std::vector<Fish>& fishes) {
    std::vector<int> zeroes(n);  // prefix sum of fish weights at column == 0
    std::vector<int> ones(n);    // prefix sum of fish weights at column == 1
    for (const auto& fish : fishes) {
        if (fish.col == 0) zeroes[fish.row] += fish.weight;
        if (fish.col == 1) ones[fish.row] += fish.weight;
    }

    std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin());
    std::partial_sum(ones.begin(), ones.end(), ones.begin());

    int res = ones.back();  // init: only catch fishes at column == 1
    for (int i = 0; i < n; ++i) {
        // build pier until at column 1, row 0-i
        if (n == 2) upMax(res, zeroes[i]);
        else upMax(res, zeroes[i] + ones.back() - ones[i]);
    }
    return res;
}

// all fishes are on row == 0
int sub3(int n, const std::vector<Fish>& fishes) {
    std::vector<int> weights(n);  // weights[i] = weight of fish at column i
    for (const auto& fish : fishes) {
        weights[fish.col] += fish.weight;
    }

    // f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i
    // i-4 i-3 i-2 i-1 i
    std::vector<int> f(n);
    f[0] = 0;
    for (int i = 1; i < n; ++i) {
        f[i] = std::max(f[i-1], weights[i-1]);
        if (i >= 2) {
            upMax(f[i], f[i-2] + weights[i-1]);
        }
        if (i >= 3) {
            upMax(f[i], f[i-3] + weights[i-2] + weights[i-1]);
        }
    }

    int res = 0;
    for (int i = 0; i < n; ++i) {
        int cur = f[i];
        if (i + 1 < n) cur += weights[i+1];
        upMax(res, cur);
    }
    return res;
}
// }}}

// sub 5 N <= 300 {{{
int sub5(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0));
    // f <= g
    for (int c = 1; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            // this is first pier
            f[c][r] = g[c][r] = weights[c-1][r];

            // last pier at column i-1
            for (int lastRow = 0; lastRow < n; ++lastRow) {
                if (lastRow <= r) {
                    int cur = std::max(
                            f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
                            g[c-1][lastRow]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                } else {
                    upMax(f[c][r], g[c-1][lastRow]);
                    upMax(g[c][r], g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
                }
            }

            // last pier at column i-2
            if (c >= 2) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
            
            // last pier at column i-3
            if (c >= 3) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
        }
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            upMax(res, cur);
        }
    }
    return res;
}
// }}}

// RMQ {{{
//
// Sparse table
// Usage:
// RMQ<int, _min> st(v);
//
// Note:
// - doesn't work for empty range
//
// Tested:
// - https://judge.yosupo.jp/problem/staticrmq
template<class T, T (*op) (T, T)> struct RMQ {
    RMQ() = default;
    RMQ(const vector<T>& v) : t{v}, n{(int) v.size()} {
        for (int k = 1; (1<<k) <= n; ++k) {
            t.emplace_back(n - (1<<k) + 1);
            for (int i = 0; i + (1<<k) <= n; ++i) {
                t[k][i] = op(t[k-1][i], t[k-1][i + (1<<(k-1))]);
            }
        }
    }

    // get range [l, r-1]
    // doesn't work for empty range
    T get(int l, int r) const {
        if (l == n) return 0;
        assert(0 <= l && l < r && r <= n);
        int k = __lg(r - l);
        return op(t[k][l], t[k][r - (1<<k)]);
    }

    T get_from(int l) const {
        return get(l, n);
    }

    T get_all() const {
        return get(0, n);
    }

private:
    vector<vector<T>> t;
    int n;
};
template<class T> T _min(T a, T b) { return b < a ? b : a; }
template<class T> T _max(T a, T b) { return a < b ? b : a; }
// }}}

// N <= 3000 {{{
int sub6(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0));
    std::vector<RMQ<int, _max>> rmq_g(n), rmq_g_with_next_col(n), rmq_f_with_next_col(n);

    for (int c = 0; c < n; ++c) {
        // compute {{{
        if (c > 0) {
            for (int r = 0; r < n; ++r) {
                // this is first pier
                f[c][r] = weights[c-1][r];

                // last pier at column i-3
                if (c >= 3) {
                    upMax(f[c][r], rmq_g_with_next_col[c-3].get_all() + weights[c-1][r]);
                }
                // last pier at column i-2
                if (c >= 2) {
                    upMax(f[c][r], std::max(
                            rmq_g[c-2].get_all() + weights[c-1][r],
                            rmq_g_with_next_col[c-2].get_all()));
                }
                g[c][r] = f[c][r];

                // last pier at column i-1
                if (c >= 1) {
                    // last row <= r
                    int cur = std::max(
                            rmq_g[c-1].get(0, r+1),
                            rmq_f_with_next_col[c-1].get(0, r+1) + weights[c-1][r]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);

                    // last row > r
                    if (r + 1 < n) {
                        upMax(f[c][r], rmq_g[c-1].get(r+1, n));
                        upMax(g[c][r], rmq_g_with_next_col[c-1].get(r+1, n) - weights[c][r]);
                    }
                }
            }
        }
        // }}}
        
        // aggregate {{{
        rmq_g[c] = RMQ<int, _max> (g[c]);

        if (c + 1 < n) {
            std::vector<int> g_with_next_col(n), f_with_next_col(n);
            for (int r = 0; r < n; ++r) {
                g_with_next_col[r] = g[c][r] + weights[c+1][r];
                f_with_next_col[r] = f[c][r] - weights[c][r];
            }
            rmq_g_with_next_col[c] = RMQ<int, _max> (g_with_next_col);
            rmq_f_with_next_col[c] = RMQ<int, _max> (f_with_next_col);
        }
        // }}}
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            upMax(res, cur);
        }
    }
    return res;

}
// }}}

// AC {{{
int sub7(int n, const std::vector<Fish>& fishes) {
    std::vector<std::vector<int>> rows(n);  // rows[c] = important coordinates at col c
    std::vector<std::vector<int>> weights(n);  // prefix sum of weights
    std::vector<std::vector<std::pair<int,int>>> fishesAt(n);  // stores {row, weight}

    for (const auto& fish : fishes) {
        int c = fish.col;
        rows[c].push_back(fish.row);
        if (c > 0) rows[c-1].push_back(fish.row);
        if (c + 1 < n) rows[c+1].push_back(fish.row);
        fishesAt[c].push_back({fish.row, fish.weight});
    }

    for (int c = 0; c < n; ++c) {
        rows[c].push_back(-1);
        std::sort(rows[c].begin(), rows[c].end());
        rows[c].erase(std::unique(rows[c].begin(), rows[c].end()), rows[c].end());

        std::sort(fishesAt[c].begin(), fishesAt[c].end());

        weights[c].resize(rows[c].size());
        int fish_id = 0;
        for (int i = 0; i < (int) rows[c].size(); ++i) {
            if (i > 0) weights[c][i] = weights[c][i-1];
            while (fish_id < (int) fishesAt[c].size()
                    && fishesAt[c][fish_id].first <= rows[c][i]) {
                weights[c][i] += fishesAt[c][fish_id].second;
                ++fish_id;
            }
        }
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n), g(n);
    std::vector<RMQ<int, _max>> rmq_g(n), rmq_g_with_next_col(n), rmq_f_with_next_col(n);

    for (int c = 0; c < n; ++c) {
        int sz = static_cast<int> (rows[c].size());
        f[c] = g[c] = std::vector<int> (sz, 0);

        // compute {{{
        if (c > 0) {
            for (int i = 0; i < sz; ++i) {
                int i_1 = std::upper_bound(rows[c-1].begin(), rows[c-1].end(), rows[c][i])
                    - rows[c-1].begin() - 1;

                // this is first pier
                f[c][i] = weights[c-1][i_1];

                // last pier at column i-3
                if (c >= 3) {
                    upMax(f[c][i], rmq_g_with_next_col[c-3].get_all() + weights[c-1][i_1]);
                }

                // last pier at column i-2
                if (c >= 2) {
                    upMax(f[c][i], std::max(
                                rmq_g[c-2].get_all() + weights[c-1][i_1],
                                rmq_g_with_next_col[c-2].get_all()));
                }
                g[c][i] = f[c][i];

                // last pier at column i-1
                if (c >= 1) {
                    // last row <= r
                    int cur = std::max(
                            rmq_g[c-1].get(0, i_1+1),
                            rmq_f_with_next_col[c-1].get(0, i_1+1) + weights[c-1][i_1]);
                    upMax(f[c][i], cur);
                    upMax(g[c][i], cur);

                    // last row > r
                    upMax(f[c][i], rmq_g[c-1].get_from(i_1+1));
                    upMax(g[c][i], rmq_g_with_next_col[c-1].get_from(i_1+1) - weights[c][i]);
                }
            }
        }
        // }}}

        // aggregate {{{
        rmq_g[c] = RMQ<int, _max> (g[c]);
        if (c + 1 < n) {
            std::vector<int> g_with_next_col(sz), f_with_next_col(sz);
            for (int i = 0; i < sz; ++i) {
                int i_1 = std::upper_bound(rows[c+1].begin(), rows[c+1].end(), rows[c][i])
                    - rows[c+1].begin() - 1;
                g_with_next_col[i] = g[c][i] + weights[c+1][i_1];
                f_with_next_col[i] = f[c][i] - weights[c][i];
            }
            rmq_g_with_next_col[c] = RMQ<int, _max> (g_with_next_col);
            rmq_f_with_next_col[c] = RMQ<int, _max> (f_with_next_col);
        }

        // }}}
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        int sz = rows[c].size();
        for (int i = 0; i < sz; ++i) {
            int cur = g[c][i];
            if (c + 1 < n) {
                int i_1 = std::upper_bound(rows[c+1].begin(), rows[c+1].end(), rows[c][i])
                    - rows[c+1].begin() - 1;
                cur += weights[c+1][i_1];
            }
            upMax(res, cur);
        }
    }
    return res;
}
// }}}

#undef int
long long max_weights(
        int n, int nFish,
        std::vector<int> xs,
        std::vector<int> ys,
        std::vector<int> ws) {
    std::vector<Fish> fishes;
    for (int i = 0; i < nFish; ++i) {
        fishes.push_back({xs[i], ys[i], ws[i]});
    }

    if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) {
        return sub1(fishes);
    }
    if (*std::max_element(xs.begin(), xs.end()) <= 1) {
        return sub2(n, fishes);
    }
    if (*std::max_element(ys.begin(), ys.end()) == 0) {
        return sub3(n, fishes);
    }
    return sub7(n, fishes);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 5440 KB Output is correct
2 Correct 30 ms 5828 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 92 ms 19788 KB Output is correct
6 Correct 125 ms 19768 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 54 ms 10320 KB Output is correct
3 Correct 63 ms 11204 KB Output is correct
4 Correct 23 ms 5340 KB Output is correct
5 Correct 30 ms 5832 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 25 ms 5476 KB Output is correct
13 Correct 30 ms 6464 KB Output is correct
14 Correct 25 ms 5480 KB Output is correct
15 Correct 29 ms 6076 KB Output is correct
16 Correct 25 ms 5436 KB Output is correct
17 Correct 29 ms 6084 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 1876 KB Output is correct
3 Correct 16 ms 4140 KB Output is correct
4 Correct 12 ms 3656 KB Output is correct
5 Correct 31 ms 6460 KB Output is correct
6 Correct 23 ms 6468 KB Output is correct
7 Correct 27 ms 6468 KB Output is correct
8 Correct 28 ms 6456 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 2 ms 980 KB Output is correct
11 Correct 1 ms 596 KB Output is correct
12 Correct 2 ms 852 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 2 ms 724 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 2 ms 980 KB Output is correct
11 Correct 1 ms 596 KB Output is correct
12 Correct 2 ms 852 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 2 ms 724 KB Output is correct
15 Correct 2 ms 596 KB Output is correct
16 Correct 2 ms 980 KB Output is correct
17 Correct 36 ms 16968 KB Output is correct
18 Correct 35 ms 15388 KB Output is correct
19 Correct 34 ms 14912 KB Output is correct
20 Correct 32 ms 13136 KB Output is correct
21 Correct 31 ms 12988 KB Output is correct
22 Correct 64 ms 27452 KB Output is correct
23 Correct 11 ms 5332 KB Output is correct
24 Correct 30 ms 15488 KB Output is correct
25 Correct 2 ms 856 KB Output is correct
26 Correct 9 ms 4584 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 2 ms 980 KB Output is correct
11 Correct 1 ms 596 KB Output is correct
12 Correct 2 ms 852 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 2 ms 724 KB Output is correct
15 Correct 2 ms 596 KB Output is correct
16 Correct 2 ms 980 KB Output is correct
17 Correct 36 ms 16968 KB Output is correct
18 Correct 35 ms 15388 KB Output is correct
19 Correct 34 ms 14912 KB Output is correct
20 Correct 32 ms 13136 KB Output is correct
21 Correct 31 ms 12988 KB Output is correct
22 Correct 64 ms 27452 KB Output is correct
23 Correct 11 ms 5332 KB Output is correct
24 Correct 30 ms 15488 KB Output is correct
25 Correct 2 ms 856 KB Output is correct
26 Correct 9 ms 4584 KB Output is correct
27 Correct 7 ms 3668 KB Output is correct
28 Correct 178 ms 84236 KB Output is correct
29 Correct 299 ms 164032 KB Output is correct
30 Correct 355 ms 202912 KB Output is correct
31 Correct 366 ms 201232 KB Output is correct
32 Correct 219 ms 96704 KB Output is correct
33 Correct 362 ms 208044 KB Output is correct
34 Correct 354 ms 208128 KB Output is correct
35 Correct 117 ms 55760 KB Output is correct
36 Correct 339 ms 196704 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 1876 KB Output is correct
3 Correct 16 ms 4140 KB Output is correct
4 Correct 12 ms 3656 KB Output is correct
5 Correct 31 ms 6460 KB Output is correct
6 Correct 23 ms 6468 KB Output is correct
7 Correct 27 ms 6468 KB Output is correct
8 Correct 28 ms 6456 KB Output is correct
9 Correct 358 ms 113816 KB Output is correct
10 Correct 163 ms 45492 KB Output is correct
11 Correct 372 ms 90676 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 1 ms 1876 KB Output is correct
21 Correct 94 ms 52636 KB Output is correct
22 Correct 415 ms 104764 KB Output is correct
23 Correct 532 ms 127284 KB Output is correct
24 Correct 540 ms 129408 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 5440 KB Output is correct
2 Correct 30 ms 5828 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 92 ms 19788 KB Output is correct
6 Correct 125 ms 19768 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 54 ms 10320 KB Output is correct
9 Correct 63 ms 11204 KB Output is correct
10 Correct 23 ms 5340 KB Output is correct
11 Correct 30 ms 5832 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 25 ms 5476 KB Output is correct
19 Correct 30 ms 6464 KB Output is correct
20 Correct 25 ms 5480 KB Output is correct
21 Correct 29 ms 6076 KB Output is correct
22 Correct 25 ms 5436 KB Output is correct
23 Correct 29 ms 6084 KB Output is correct
24 Correct 0 ms 212 KB Output is correct
25 Correct 1 ms 1876 KB Output is correct
26 Correct 16 ms 4140 KB Output is correct
27 Correct 12 ms 3656 KB Output is correct
28 Correct 31 ms 6460 KB Output is correct
29 Correct 23 ms 6468 KB Output is correct
30 Correct 27 ms 6468 KB Output is correct
31 Correct 28 ms 6456 KB Output is correct
32 Correct 0 ms 212 KB Output is correct
33 Correct 0 ms 212 KB Output is correct
34 Correct 0 ms 212 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 0 ms 212 KB Output is correct
37 Correct 1 ms 212 KB Output is correct
38 Correct 0 ms 212 KB Output is correct
39 Correct 0 ms 212 KB Output is correct
40 Correct 1 ms 468 KB Output is correct
41 Correct 2 ms 980 KB Output is correct
42 Correct 1 ms 596 KB Output is correct
43 Correct 2 ms 852 KB Output is correct
44 Correct 1 ms 340 KB Output is correct
45 Correct 2 ms 724 KB Output is correct
46 Correct 2 ms 596 KB Output is correct
47 Correct 2 ms 980 KB Output is correct
48 Correct 36 ms 16968 KB Output is correct
49 Correct 35 ms 15388 KB Output is correct
50 Correct 34 ms 14912 KB Output is correct
51 Correct 32 ms 13136 KB Output is correct
52 Correct 31 ms 12988 KB Output is correct
53 Correct 64 ms 27452 KB Output is correct
54 Correct 11 ms 5332 KB Output is correct
55 Correct 30 ms 15488 KB Output is correct
56 Correct 2 ms 856 KB Output is correct
57 Correct 9 ms 4584 KB Output is correct
58 Correct 7 ms 3668 KB Output is correct
59 Correct 178 ms 84236 KB Output is correct
60 Correct 299 ms 164032 KB Output is correct
61 Correct 355 ms 202912 KB Output is correct
62 Correct 366 ms 201232 KB Output is correct
63 Correct 219 ms 96704 KB Output is correct
64 Correct 362 ms 208044 KB Output is correct
65 Correct 354 ms 208128 KB Output is correct
66 Correct 117 ms 55760 KB Output is correct
67 Correct 339 ms 196704 KB Output is correct
68 Correct 358 ms 113816 KB Output is correct
69 Correct 163 ms 45492 KB Output is correct
70 Correct 372 ms 90676 KB Output is correct
71 Correct 0 ms 212 KB Output is correct
72 Correct 0 ms 212 KB Output is correct
73 Correct 0 ms 212 KB Output is correct
74 Correct 0 ms 212 KB Output is correct
75 Correct 0 ms 212 KB Output is correct
76 Correct 0 ms 212 KB Output is correct
77 Correct 0 ms 212 KB Output is correct
78 Correct 0 ms 212 KB Output is correct
79 Correct 1 ms 1876 KB Output is correct
80 Correct 94 ms 52636 KB Output is correct
81 Correct 415 ms 104764 KB Output is correct
82 Correct 532 ms 127284 KB Output is correct
83 Correct 540 ms 129408 KB Output is correct
84 Correct 514 ms 354048 KB Output is correct
85 Correct 517 ms 360284 KB Output is correct
86 Correct 780 ms 191936 KB Output is correct
87 Correct 831 ms 199284 KB Output is correct
88 Correct 0 ms 212 KB Output is correct
89 Correct 803 ms 199216 KB Output is correct
90 Correct 533 ms 176500 KB Output is correct
91 Correct 404 ms 137940 KB Output is correct