제출 #626091

#제출 시각아이디문제언어결과실행 시간메모리
626091I_love_Hoang_Yen메기 농장 (IOI22_fish)C++17
32 / 100
772 ms2097152 KiB
#include "bits/stdc++.h" using namespace std; #define int long long #define i_1 jakcjacjl struct Fish { int col, row; int weight; }; bool operator < (const Fish& a, const Fish& b) { if (a.col != b.col) return a.col < b.col; return a.row < b.row; } void upMax(int& f, int val) { if (val > f) f = val; } // sub1 - 3 {{{ // fishes are on even columns -> build piers on odd columns // & catch all fishes int sub1(const std::vector<Fish>& fishes) { int res = 0; for (const auto& fish : fishes) { res += fish.weight; } return res; } // fishes are on first 2 columns int sub2(int n, const std::vector<Fish>& fishes) { std::vector<int> zeroes(n); // prefix sum of fish weights at column == 0 std::vector<int> ones(n); // prefix sum of fish weights at column == 1 for (const auto& fish : fishes) { if (fish.col == 0) zeroes[fish.row] += fish.weight; if (fish.col == 1) ones[fish.row] += fish.weight; } std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin()); std::partial_sum(ones.begin(), ones.end(), ones.begin()); int res = ones.back(); // init: only catch fishes at column == 1 for (int i = 0; i < n; ++i) { // build pier until at column 1, row 0-i if (n == 2) upMax(res, zeroes[i]); else upMax(res, zeroes[i] + ones.back() - ones[i]); } return res; } // all fishes are on row == 0 int sub3(int n, const std::vector<Fish>& fishes) { std::vector<int> weights(n); // weights[i] = weight of fish at column i for (const auto& fish : fishes) { weights[fish.col] += fish.weight; } // f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i // i-4 i-3 i-2 i-1 i std::vector<int> f(n); f[0] = 0; for (int i = 1; i < n; ++i) { f[i] = std::max(f[i-1], weights[i-1]); if (i >= 2) { upMax(f[i], f[i-2] + weights[i-1]); } if (i >= 3) { upMax(f[i], f[i-3] + weights[i-2] + weights[i-1]); } } int res = 0; for (int i = 0; i < n; ++i) { int cur = f[i]; if (i + 1 < n) cur += weights[i+1]; upMax(res, cur); } return res; } // }}} // sub 5 N <= 300 {{{ int sub5(int n, const std::vector<Fish>& fishes) { // Init weights[i][j] = sum of fish on column i, from row 0 -> row j std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0)); for (const auto& fish : fishes) { weights[fish.col][fish.row] += fish.weight; } for (int col = 0; col < n; ++col) { std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin()); } // f[c][r] = best strategy if we last BUILD PIER AT column c, row r // only considering fishes <= (c, r) // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1] std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)), g(n, std::vector<int> (n, 0)); // f <= g for (int c = 1; c < n; ++c) { for (int r = 0; r < n; ++r) { // this is first pier f[c][r] = g[c][r] = weights[c-1][r]; // last pier at column i-1 for (int lastRow = 0; lastRow < n; ++lastRow) { if (lastRow <= r) { int cur = std::max( f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow], g[c-1][lastRow]); upMax(f[c][r], cur); upMax(g[c][r], cur); } else { upMax(f[c][r], g[c-1][lastRow]); upMax(g[c][r], g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]); } } // last pier at column i-2 if (c >= 2) { for (int lastRow = 0; lastRow < n; ++lastRow) { int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)]; upMax(f[c][r], cur); upMax(g[c][r], cur); } } // last pier at column i-3 if (c >= 3) { for (int lastRow = 0; lastRow < n; ++lastRow) { int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r]; upMax(f[c][r], cur); upMax(g[c][r], cur); } } } } int res = 0; for (int c = 0; c < n; ++c) { for (int r = 0; r < n; ++r) { assert(g[c][r] >= f[c][r]); int cur = g[c][r]; if (c + 1 < n) { cur += weights[c+1][r]; } upMax(res, cur); } } return res; } // }}} // SegTree, copied from AtCoder library {{{ // AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html // // Notes: // - Index of elements from 0 -> n-1 // - Range queries are [l, r-1] // // Tested: // - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j // - https://oj.vnoi.info/problem/gss // - https://oj.vnoi.info/problem/nklineup // - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr // - https://judge.yosupo.jp/problem/point_add_range_sum // - https://judge.yosupo.jp/problem/point_set_range_composite int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } template< class T, // data type for nodes T (*op) (T, T), // operator to combine 2 nodes T (*e)() // identity element > struct SegTree { SegTree() : SegTree(0) {} explicit SegTree(int n) : SegTree(vector<T> (n, e())) {} explicit SegTree(const vector<T>& v) : _n((int) v.size()) { log = ceil_pow2(_n); size = 1<<log; d = vector<T> (2*size, e()); for (int i = 0; i < _n; i++) d[size+i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } // 0 <= p < n void set(int p, T x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } // 0 <= p < n T get(int p) const { assert(0 <= p && p < _n); return d[p + size]; } // Get product in range [l, r-1] // 0 <= l <= r <= n // For empty segment (l == r) -> return e() T prod(int l, int r) const { assert(0 <= l && l <= r && r <= _n); T sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } T all_prod() const { return d[1]; } // Binary search on SegTree to find largest r: // f(op(a[l] .. a[r-1])) = true (assuming empty array is always true) // f(op(a[l] .. a[r])) = false (assuming op(..., a[n]), which is out of bound, is always false) template <bool (*f)(T)> int max_right(int l) const { return max_right(l, [](T x) { return f(x); }); } template <class F> int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; T sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } // Binary search on SegTree to find smallest l: // f(op(a[l] .. a[r-1])) = true (assuming empty array is always true) // f(op(a[l-1] .. a[r-1])) = false (assuming op(a[-1], ..), which is out of bound, is always false) template <bool (*f)(T)> int min_left(int r) const { return min_left(r, [](T x) { return f(x); }); } template <class F> int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; T sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; vector<T> d; void update(int k) { d[k] = op(d[2*k], d[2*k+1]); } }; // }}} struct MaxSegTreeOp { static int op(int x, int y) { return max(x, y); } static int e() { return 0; } }; // RMQ {{{ // // Sparse table // Usage: // RMQ<int, _min> st(v); // // Note: // - doesn't work for empty range // // Tested: // - https://judge.yosupo.jp/problem/staticrmq template<class T, T (*op) (T, T)> struct RMQ { RMQ() = default; RMQ(const vector<T>& v) : t{v}, n{(int) v.size()} { for (int k = 1; (1<<k) <= n; ++k) { t.emplace_back(n - (1<<k) + 1); for (int i = 0; i + (1<<k) <= n; ++i) { t[k][i] = op(t[k-1][i], t[k-1][i + (1<<(k-1))]); } } } // get range [l, r-1] // doesn't work for empty range T get(int l, int r) const { if (l == r) return 0; assert(0 <= l && l < r && r <= n); int k = __lg(r - l); return op(t[k][l], t[k][r - (1<<k)]); } private: vector<vector<T>> t; int n; }; template<class T> T _min(T a, T b) { return b < a ? b : a; } template<class T> T _max(T a, T b) { return a < b ? b : a; } // }}} // N <= 3000 {{{ int sub6(int n, const std::vector<Fish>& fishes) { // Init weights[i][j] = sum of fish on column i, from row 0 -> row j std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0)); for (const auto& fish : fishes) { weights[fish.col][fish.row] += fish.weight; } for (int col = 0; col < n; ++col) { std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin()); } // f[c][r] = best strategy if we last BUILD PIER AT column c, row r // only considering fishes <= (c, r) // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1] std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)), g(n, std::vector<int> (n, 0)), f_with_next_col_prefix_max(n, std::vector<int> (n, 0)); std::vector<int> g_with_next_col_prefix_max(n, 0); std::vector<RMQ<int, _max>> st_g(n), st_g_with_next_col(n); // f <= g for (int c = 0; c < n; ++c) { // compute {{{ if (c > 0) { for (int r = 0; r < n; ++r) { // this is first pier f[c][r] = g[c][r] = weights[c-1][r]; // last pier at column i-1 if (c >= 1) { // last row <= r int cur = std::max( st_g[c-1].get(0, r), f_with_next_col_prefix_max[c-1][r] + weights[c-1][r]); upMax(f[c][r], cur); upMax(g[c][r], cur); // last row > r if (r + 1 < n) { upMax(f[c][r], st_g[c-1].get(r+1, n-1)); upMax(g[c][r], st_g_with_next_col[c-1].get(r+1, n-1) - weights[c][r]); } } // last pier at column i-2 if (c >= 2) { int cur = std::max( st_g[c-2].get(0, n-1) + weights[c-1][r], st_g_with_next_col[c-2].get(0, n-1)); upMax(f[c][r], cur); upMax(g[c][r], cur); } // last pier at column i-3 if (c >= 3) { int cur = st_g_with_next_col[c-3].get(0, n-1) + weights[c-1][r]; upMax(f[c][r], cur); upMax(g[c][r], cur); } } } // }}} // aggregate {{{ st_g[c] = RMQ<int, _max> (g[c]); auto MAX = [] (auto a, auto b) { return std::max(a, b); }; if (c + 1 < n) { // g_with_next_col[c][r] = g[c][r] + weights[c+1][r] std::vector<int> g_with_next_col(n); for (int r = 0; r < n; ++r) { g_with_next_col[r] = g[c][r] + weights[c+1][r]; } st_g_with_next_col[c] = RMQ<int, _max> (g_with_next_col); for (int r = 0; r < n; ++r) { f_with_next_col_prefix_max[c][r] = f[c][r] - weights[c][r]; } std::partial_sum( f_with_next_col_prefix_max[c].begin(), f_with_next_col_prefix_max[c].end(), f_with_next_col_prefix_max[c].begin(), MAX); } // }}} } int res = 0; for (int c = 0; c < n; ++c) { for (int r = 0; r < n; ++r) { assert(g[c][r] >= f[c][r]); int cur = g[c][r]; if (c + 1 < n) { cur += weights[c+1][r]; } upMax(res, cur); } } return res; } // }}} #undef int long long max_weights( int n, int nFish, std::vector<int> xs, std::vector<int> ys, std::vector<int> ws) { std::vector<Fish> fishes; for (int i = 0; i < nFish; ++i) { fishes.push_back({xs[i], ys[i], ws[i]}); } if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) { return sub1(fishes); } if (*std::max_element(xs.begin(), xs.end()) <= 1) { return sub2(n, fishes); } if (*std::max_element(ys.begin(), ys.end()) == 0) { return sub3(n, fishes); } return sub6(n, fishes); }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...