답안 #626077

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
626077 2022-08-11T07:55:55 Z I_love_Hoang_Yen 메기 농장 (IOI22_fish) C++17
70 / 100
828 ms 2097152 KB
#include "bits/stdc++.h"
using namespace std;

#define int long long
#define i_1 jakcjacjl
struct Fish {
    int col, row;
    int weight;
};
bool operator < (const Fish& a, const Fish& b) {
    if (a.col != b.col) return a.col < b.col;
    return a.row < b.row;
}

void upMax(int& f, int val) {
    if (val > f) f = val;
}

// sub1 - 3 {{{
// fishes are on even columns -> build piers on odd columns
// & catch all fishes
int sub1(const std::vector<Fish>& fishes) {
    int res = 0;
    for (const auto& fish : fishes) {
        res += fish.weight;
    }
    return res;
}

// fishes are on first 2 columns
int sub2(int n, const std::vector<Fish>& fishes) {
    std::vector<int> zeroes(n);  // prefix sum of fish weights at column == 0
    std::vector<int> ones(n);    // prefix sum of fish weights at column == 1
    for (const auto& fish : fishes) {
        if (fish.col == 0) zeroes[fish.row] += fish.weight;
        if (fish.col == 1) ones[fish.row] += fish.weight;
    }

    std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin());
    std::partial_sum(ones.begin(), ones.end(), ones.begin());

    int res = ones.back();  // init: only catch fishes at column == 1
    for (int i = 0; i < n; ++i) {
        // build pier until at column 1, row 0-i
        if (n == 2) upMax(res, zeroes[i]);
        else upMax(res, zeroes[i] + ones.back() - ones[i]);
    }
    return res;
}

// all fishes are on row == 0
int sub3(int n, const std::vector<Fish>& fishes) {
    std::vector<int> weights(n);  // weights[i] = weight of fish at column i
    for (const auto& fish : fishes) {
        weights[fish.col] += fish.weight;
    }

    // f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i
    // i-4 i-3 i-2 i-1 i
    std::vector<int> f(n);
    f[0] = 0;
    for (int i = 1; i < n; ++i) {
        f[i] = std::max(f[i-1], weights[i-1]);
        if (i >= 2) {
            upMax(f[i], f[i-2] + weights[i-1]);
        }
        if (i >= 3) {
            upMax(f[i], f[i-3] + weights[i-2] + weights[i-1]);
        }
    }

    int res = 0;
    for (int i = 0; i < n; ++i) {
        int cur = f[i];
        if (i + 1 < n) cur += weights[i+1];
        upMax(res, cur);
    }
    return res;
}
// }}}

// sub 5 N <= 300 {{{
int sub5(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0));
    // f <= g
    for (int c = 1; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            // this is first pier
            f[c][r] = g[c][r] = weights[c-1][r];

            // last pier at column i-1
            for (int lastRow = 0; lastRow < n; ++lastRow) {
                if (lastRow <= r) {
                    int cur = std::max(
                            f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
                            g[c-1][lastRow]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                } else {
                    upMax(f[c][r], g[c-1][lastRow]);
                    upMax(g[c][r], g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
                }
            }

            // last pier at column i-2
            if (c >= 2) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
            
            // last pier at column i-3
            if (c >= 3) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
        }
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            upMax(res, cur);
        }
    }
    return res;
}
// }}}

// N <= 3000 {{{
int sub6(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0)),
                                  g_prefix_max(n, std::vector<int> (n, 0)),
                                  g_suffix_max(n, std::vector<int> (n, 0)),
                                  g_with_next_col_suffix_max(n, std::vector<int> (n, 0)),
                                  f_with_next_col_prefix_max(n, std::vector<int> (n, 0));
    std::vector<int> g_with_next_col_prefix_max(n, 0);

    // f <= g
    for (int c = 0; c < n; ++c) {
        // compute {{{
        if (c > 0) {
            for (int r = 0; r < n; ++r) {
                // this is first pier
                f[c][r] = g[c][r] = weights[c-1][r];

                // last pier at column i-1
                if (c >= 1) {
                    // last row <= r
                    int cur = std::max(g_prefix_max[c-1][r], f_with_next_col_prefix_max[c-1][r] + weights[c-1][r]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);

                    // last row > r
                    if (r + 1 < n) {
                        upMax(f[c][r], g_suffix_max[c-1][r + 1]);
                        upMax(g[c][r], g_with_next_col_suffix_max[c-1][r + 1] - weights[c][r]);
                    }
                }
                // last pier at column i-2
                if (c >= 2) {
                    int cur = std::max(g_prefix_max[c-2].back() + weights[c-1][r], g_with_next_col_prefix_max[c-2]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
                // last pier at column i-3
                if (c >= 3) {
                    int cur = g_with_next_col_prefix_max[c-3] + weights[c-1][r];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
        }
        // }}}
        
        // aggregate {{{
        // g_prefix_max[c][r] = max(g[c][0], .., g[c][r])
        auto MAX = [] (auto a, auto b) { return std::max(a, b); };
        std::partial_sum(g[c].begin(), g[c].end(), g_prefix_max[c].begin(), MAX);
        std::partial_sum(g[c].rbegin(), g[c].rend(), g_suffix_max[c].rbegin(), MAX);

        if (c + 1 < n) {
            // g_with_next_col_prefix_max[c] = max(
            //     g_with_next_col_prefix_max[c-1],
            //     g[c][0] + weights[c+1][0],
            //     ...
            //     g[c][r] + weights[c+1][r])
            g_with_next_col_prefix_max[c] = (c > 0) ? g_with_next_col_prefix_max[c-1] : 0;

            for (int r = 0; r < n; ++r) {
                g_with_next_col_suffix_max[c][r] = g[c][r] + weights[c+1][r];
            }
            g_with_next_col_prefix_max[c] = std::max(g_with_next_col_prefix_max[c], *max_element(g_with_next_col_suffix_max[c].begin(), g_with_next_col_suffix_max[c].end()));

            std::partial_sum(
                    g_with_next_col_suffix_max[c].rbegin(),
                    g_with_next_col_suffix_max[c].rend(),
                    g_with_next_col_suffix_max[c].rbegin(),
                    MAX);

            for (int r = 0; r < n; ++r) {
                f_with_next_col_prefix_max[c][r] = f[c][r] - weights[c][r];
            }
            std::partial_sum(
                    f_with_next_col_prefix_max[c].begin(),
                    f_with_next_col_prefix_max[c].end(),
                    f_with_next_col_prefix_max[c].begin(),
                    MAX);
        }
        // }}}
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            upMax(res, cur);
        }
    }
    return res;

}
// }}}

const int INF = (int) 1e18;
int sub7(int n, const std::vector<Fish>& fishes) {
}

#undef int
long long max_weights(
        int n, int nFish,
        std::vector<int> xs,
        std::vector<int> ys,
        std::vector<int> ws) {
    std::vector<Fish> fishes;
    for (int i = 0; i < nFish; ++i) {
        fishes.push_back({xs[i], ys[i], ws[i]});
    }

    if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) {
        return sub1(fishes);
    }
    if (*std::max_element(xs.begin(), xs.end()) <= 1) {
        return sub2(n, fishes);
    }
    if (*std::max_element(ys.begin(), ys.end()) == 0) {
        return sub3(n, fishes);
    }
    return sub6(n, fishes);
}

Compilation message

fish.cpp: In function 'long long int sub7(long long int, const std::vector<Fish>&)':
fish.cpp:267:1: warning: no return statement in function returning non-void [-Wreturn-type]
  267 | }
      | ^
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 5320 KB Output is correct
2 Correct 32 ms 5828 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 100 ms 19784 KB Output is correct
6 Correct 95 ms 19676 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 54 ms 10384 KB Output is correct
3 Correct 63 ms 11208 KB Output is correct
4 Correct 25 ms 5332 KB Output is correct
5 Correct 30 ms 5824 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 26 ms 5548 KB Output is correct
13 Correct 33 ms 6456 KB Output is correct
14 Correct 27 ms 5604 KB Output is correct
15 Correct 29 ms 6096 KB Output is correct
16 Correct 27 ms 5468 KB Output is correct
17 Correct 29 ms 6084 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 2 ms 1792 KB Output is correct
3 Correct 17 ms 4180 KB Output is correct
4 Correct 15 ms 3656 KB Output is correct
5 Correct 30 ms 6464 KB Output is correct
6 Correct 31 ms 6460 KB Output is correct
7 Correct 31 ms 6580 KB Output is correct
8 Correct 33 ms 6460 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 2 ms 1588 KB Output is correct
10 Correct 5 ms 5460 KB Output is correct
11 Correct 2 ms 1620 KB Output is correct
12 Correct 5 ms 5332 KB Output is correct
13 Correct 1 ms 596 KB Output is correct
14 Correct 5 ms 5332 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 2 ms 1588 KB Output is correct
10 Correct 5 ms 5460 KB Output is correct
11 Correct 2 ms 1620 KB Output is correct
12 Correct 5 ms 5332 KB Output is correct
13 Correct 1 ms 596 KB Output is correct
14 Correct 5 ms 5332 KB Output is correct
15 Correct 4 ms 5204 KB Output is correct
16 Correct 1 ms 724 KB Output is correct
17 Correct 19 ms 7576 KB Output is correct
18 Correct 19 ms 7616 KB Output is correct
19 Correct 19 ms 7600 KB Output is correct
20 Correct 18 ms 7496 KB Output is correct
21 Correct 18 ms 7560 KB Output is correct
22 Correct 30 ms 9748 KB Output is correct
23 Correct 7 ms 5968 KB Output is correct
24 Correct 14 ms 6864 KB Output is correct
25 Correct 5 ms 5320 KB Output is correct
26 Correct 7 ms 5788 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 2 ms 1588 KB Output is correct
10 Correct 5 ms 5460 KB Output is correct
11 Correct 2 ms 1620 KB Output is correct
12 Correct 5 ms 5332 KB Output is correct
13 Correct 1 ms 596 KB Output is correct
14 Correct 5 ms 5332 KB Output is correct
15 Correct 4 ms 5204 KB Output is correct
16 Correct 1 ms 724 KB Output is correct
17 Correct 19 ms 7576 KB Output is correct
18 Correct 19 ms 7616 KB Output is correct
19 Correct 19 ms 7600 KB Output is correct
20 Correct 18 ms 7496 KB Output is correct
21 Correct 18 ms 7560 KB Output is correct
22 Correct 30 ms 9748 KB Output is correct
23 Correct 7 ms 5968 KB Output is correct
24 Correct 14 ms 6864 KB Output is correct
25 Correct 5 ms 5320 KB Output is correct
26 Correct 7 ms 5788 KB Output is correct
27 Correct 434 ms 494404 KB Output is correct
28 Correct 94 ms 41852 KB Output is correct
29 Correct 505 ms 509064 KB Output is correct
30 Correct 498 ms 508904 KB Output is correct
31 Correct 505 ms 508908 KB Output is correct
32 Correct 107 ms 31464 KB Output is correct
33 Correct 486 ms 508664 KB Output is correct
34 Correct 485 ms 508684 KB Output is correct
35 Correct 439 ms 500156 KB Output is correct
36 Correct 474 ms 508784 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 2 ms 1792 KB Output is correct
3 Correct 17 ms 4180 KB Output is correct
4 Correct 15 ms 3656 KB Output is correct
5 Correct 30 ms 6464 KB Output is correct
6 Correct 31 ms 6460 KB Output is correct
7 Correct 31 ms 6580 KB Output is correct
8 Correct 33 ms 6460 KB Output is correct
9 Runtime error 828 ms 2097152 KB Execution killed with signal 9
10 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 5320 KB Output is correct
2 Correct 32 ms 5828 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 100 ms 19784 KB Output is correct
6 Correct 95 ms 19676 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 54 ms 10384 KB Output is correct
9 Correct 63 ms 11208 KB Output is correct
10 Correct 25 ms 5332 KB Output is correct
11 Correct 30 ms 5824 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 26 ms 5548 KB Output is correct
19 Correct 33 ms 6456 KB Output is correct
20 Correct 27 ms 5604 KB Output is correct
21 Correct 29 ms 6096 KB Output is correct
22 Correct 27 ms 5468 KB Output is correct
23 Correct 29 ms 6084 KB Output is correct
24 Correct 0 ms 212 KB Output is correct
25 Correct 2 ms 1792 KB Output is correct
26 Correct 17 ms 4180 KB Output is correct
27 Correct 15 ms 3656 KB Output is correct
28 Correct 30 ms 6464 KB Output is correct
29 Correct 31 ms 6460 KB Output is correct
30 Correct 31 ms 6580 KB Output is correct
31 Correct 33 ms 6460 KB Output is correct
32 Correct 1 ms 212 KB Output is correct
33 Correct 0 ms 212 KB Output is correct
34 Correct 0 ms 212 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 0 ms 212 KB Output is correct
38 Correct 0 ms 212 KB Output is correct
39 Correct 1 ms 212 KB Output is correct
40 Correct 2 ms 1588 KB Output is correct
41 Correct 5 ms 5460 KB Output is correct
42 Correct 2 ms 1620 KB Output is correct
43 Correct 5 ms 5332 KB Output is correct
44 Correct 1 ms 596 KB Output is correct
45 Correct 5 ms 5332 KB Output is correct
46 Correct 4 ms 5204 KB Output is correct
47 Correct 1 ms 724 KB Output is correct
48 Correct 19 ms 7576 KB Output is correct
49 Correct 19 ms 7616 KB Output is correct
50 Correct 19 ms 7600 KB Output is correct
51 Correct 18 ms 7496 KB Output is correct
52 Correct 18 ms 7560 KB Output is correct
53 Correct 30 ms 9748 KB Output is correct
54 Correct 7 ms 5968 KB Output is correct
55 Correct 14 ms 6864 KB Output is correct
56 Correct 5 ms 5320 KB Output is correct
57 Correct 7 ms 5788 KB Output is correct
58 Correct 434 ms 494404 KB Output is correct
59 Correct 94 ms 41852 KB Output is correct
60 Correct 505 ms 509064 KB Output is correct
61 Correct 498 ms 508904 KB Output is correct
62 Correct 505 ms 508908 KB Output is correct
63 Correct 107 ms 31464 KB Output is correct
64 Correct 486 ms 508664 KB Output is correct
65 Correct 485 ms 508684 KB Output is correct
66 Correct 439 ms 500156 KB Output is correct
67 Correct 474 ms 508784 KB Output is correct
68 Runtime error 828 ms 2097152 KB Execution killed with signal 9
69 Halted 0 ms 0 KB -