답안 #625725

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
625725 2022-08-10T17:37:25 Z I_love_Hoang_Yen 메기 농장 (IOI22_fish) C++17
18 / 100
355 ms 132588 KB
#include "bits/stdc++.h"
using namespace std;

#define int long long
#define i_1 jakcjacjl
struct Fish {
    int col, row;
    int weight;
};
bool operator < (const Fish& a, const Fish& b) {
    if (a.col != b.col) return a.col < b.col;
    return a.row < b.row;
}

void upMax(int& f, int val) {
    if (val > f) f = val;
}

// sub1 - 3 {{{
// fishes are on even columns -> build piers on odd columns
// & catch all fishes
int sub1(const std::vector<Fish>& fishes) {
    int res = 0;
    for (const auto& fish : fishes) {
        res += fish.weight;
    }
    return res;
}

// fishes are on first 2 columns
int sub2(int n, const std::vector<Fish>& fishes) {
    std::vector<int> zeroes(n);  // prefix sum of fish weights at column == 0
    std::vector<int> ones(n);    // prefix sum of fish weights at column == 1
    for (const auto& fish : fishes) {
        if (fish.col == 0) zeroes[fish.row] += fish.weight;
        if (fish.col == 1) ones[fish.row] += fish.weight;
    }

    std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin());
    std::partial_sum(ones.begin(), ones.end(), ones.begin());

    int res = ones.back();  // init: only catch fishes at column == 1
    for (int i = 0; i < n; ++i) {
        // build pier until at column 1, row 0-i
        if (n == 2) upMax(res, zeroes[i]);
        else upMax(res, zeroes[i] + ones.back() - ones[i]);
    }
    return res;
}

// all fishes are on row == 0
int sub3(int n, const std::vector<Fish>& fishes) {
    std::vector<int> weights(n);  // weights[i] = weight of fish at column i
    for (const auto& fish : fishes) {
        weights[fish.col] += fish.weight;
    }

    // f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i
    // i-4 i-3 i-2 i-1 i
    std::vector<int> f(n);
    f[0] = 0;
    for (int i = 1; i < n; ++i) {
        f[i] = std::max(f[i-1], weights[i-1]);
        if (i >= 2) {
            upMax(f[i], f[i-2] + weights[i-1]);
        }
        if (i >= 3) {
            upMax(f[i], f[i-3] + weights[i-2] + weights[i-1]);
        }
    }

    int res = 0;
    for (int i = 0; i < n; ++i) {
        int cur = f[i];
        if (i + 1 < n) cur += weights[i+1];
        upMax(res, cur);
    }
    return res;
}
// }}}

// sub 5 N <= 300 {{{
int sub5(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0));
    // f <= g
    for (int c = 1; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            // this is first pier
            f[c][r] = g[c][r] = weights[c-1][r];

            // last pier at column i-1
            for (int lastRow = 0; lastRow < n; ++lastRow) {
                if (lastRow <= r) {
                    int cur = std::max(
                            f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
                            g[c-1][lastRow]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                } else {
                    upMax(f[c][r], g[c-1][lastRow]);
                    upMax(g[c][r], g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
                }
            }

            // last pier at column i-2
            if (c >= 2) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
            
            // last pier at column i-3
            if (c >= 3) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
        }
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            upMax(res, cur);
        }
    }
    return res;
}
// }}}

// N <= 3000 {{{
int sub6(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0)),
                                  g_prefix_max(n, std::vector<int> (n, 0)),
                                  g_suffix_max(n, std::vector<int> (n, 0)),
                                  g_with_next_col_suffix_max(n, std::vector<int> (n, 0)),
                                  g_with_next_col_prefix_max(n, std::vector<int> (n, 0)),
                                  f_with_next_col_prefix_max(n, std::vector<int> (n, 0));

    // f <= g
    for (int c = 0; c < n; ++c) {
        // compute {{{
        if (c > 0) {
            for (int r = 0; r < n; ++r) {
                // this is first pier
                f[c][r] = g[c][r] = weights[c-1][r];

                // last pier at column i-1
                if (c >= 1) {
                    // last row <= r
                    int cur = std::max(
                            g_prefix_max[c-1][r],
                            f_with_next_col_prefix_max[c-1][r] + weights[c-1][r]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);

                    // last row > r
                    if (r + 1 < n) {
                        upMax(f[c][r], g_suffix_max[c-1][r + 1]);
                        upMax(g[c][r], g_with_next_col_suffix_max[c-1][r + 1] - weights[c][r]);
                    }
                }

                // last pier at column i-2
                if (c >= 2) {
                    int cur = std::max(
                            g_prefix_max[c-2].back() + weights[c-1][r],
                            g_with_next_col_prefix_max[c-2].back());
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }

                // last pier at column i-3
                if (c >= 3) {
                    int cur = g_with_next_col_prefix_max[c-3].back() + weights[c-1][r];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
        }
        // }}}
        
        // aggregate {{{
        // g_prefix_max[c][r] = max(g[c][0], .., g[c][r])
        auto MAX = [] (auto a, auto b) { return std::max(a, b); };
        std::partial_sum(g[c].begin(), g[c].end(), g_prefix_max[c].begin(), MAX);
        std::partial_sum(g[c].rbegin(), g[c].rend(), g_suffix_max[c].rbegin(), MAX);

        if (c + 1 < n) {
            // g_with_next_col_prefix_max[c][r] = max(
            //     g[c][0] + weights[c+1][0],
            //     ...
            //     g[c][r] + weights[c+1][r])
            for (int r = 0; r < n; ++r) {
                g_with_next_col_prefix_max[c][r] = g[c][r] + weights[c+1][r];
            }
            g_with_next_col_suffix_max[c] = g_with_next_col_prefix_max[c];

            std::partial_sum(
                    g_with_next_col_prefix_max[c].begin(),
                    g_with_next_col_prefix_max[c].end(),
                    g_with_next_col_prefix_max[c].begin(),
                    MAX);
            std::partial_sum(
                    g_with_next_col_suffix_max[c].rbegin(),
                    g_with_next_col_suffix_max[c].rend(),
                    g_with_next_col_suffix_max[c].rbegin(),
                    MAX);

            for (int r = 0; r < n; ++r) {
                f_with_next_col_prefix_max[c][r] = f[c][r] - weights[c][r];
            }
            std::partial_sum(
                    f_with_next_col_prefix_max[c].begin(),
                    f_with_next_col_prefix_max[c].end(),
                    f_with_next_col_prefix_max[c].begin(),
                    MAX);
        }
        // }}}
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            upMax(res, cur);
        }
    }
    return res;

}
// }}}

int sub7(int n, const std::vector<Fish>& fishes) {
    // fishesAt[col] = vector storing all fishes at column `col`
    std::vector<std::map<int, int>> fishesMap(n);
    std::vector<std::vector< std::pair<int,int> >> fishesAt(n);
    std::vector<std::vector<int>> weights(n);

    for (const auto& fish : fishes) {
        int c = fish.col;
        fishesMap[c][fish.row] += fish.weight;
        if (c + 1 < n) fishesMap[c + 1][fish.row] += 0;
        if (c + 2 < n) fishesMap[c + 2][fish.row] += 0;
        if (c + 3 < n) fishesMap[c + 3][fish.row] += 0;
    }
    
    for (int c = 0; c < n; ++c) {
        fishesAt[c].push_back({-2, 0});
        fishesAt[c].push_back({-1, 0});
        for (auto [r, w] : fishesMap[c]) {
            fishesAt[c].push_back({r, w});
        }
        fishesAt[c].push_back({n, 0});
        fishesAt[c].push_back({1000111, 0});
    }

    for (int c = 0; c < n; ++c) {
        for (auto [row, weight] : fishesAt[c]) {
            weights[c].push_back(weight);
        }
        std::partial_sum(weights[c].begin(), weights[c].end(), weights[c].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n),
                                  g(n),
                                  g_prefix_max(n),
                                  g_suffix_max(n),
                                  g_with_next_col_suffix_max(n),
                                  g_with_next_col_prefix_max(n),
                                  f_with_next_col_prefix_max(n);

    for (int c = 0; c < n; ++c) {
        // compute {{{
        int k = (int) fishesAt[c].size();
        f[c].resize(k);
        g[c].resize(k);

        if (c > 0) {
            for (int i = 0; i < k - 1; ++i) {  // ignore last
                int r = fishesAt[c][i].first;
                int i_1 = lower_bound(
                        fishesAt[c-1].begin(), fishesAt[c-1].end(), std::make_pair(r+1, -1LL))
                    - fishesAt[c-1].begin();
                --i_1;
                assert(fishesAt[c-1][i_1].first <= r && fishesAt[c-1][i_1 + 1].first > r);

#define r ajckajcl

                // this is first pier
                f[c][i] = g[c][i] = weights[c-1][i_1];

                // last pier at column i-1
                {
                    // last row <= r
                    int cur = std::max(
                            g_prefix_max[c-1][i_1],
                            f_with_next_col_prefix_max[c-1][i_1] + weights[c-1][i_1]);
                    upMax(f[c][i], cur);
                    upMax(g[c][i], cur);

                    // last row > r
                    if (i + 1 < k-1) {
                        upMax(f[c][i], g_suffix_max[c-1][i_1 + 1]);
                        upMax(g[c][i], g_with_next_col_prefix_max[c-1][i_1 + 1] - weights[c][i]);
                    }
                }

                // last pier at column i-2
                if (c >= 2) {
                    int cur = std::max(
                            g_prefix_max[c-2].back() + weights[c-1][i_1],
                            g_with_next_col_prefix_max[c-2].back());
                    upMax(f[c][i], cur);
                    upMax(g[c][i], cur);
                }

                // last pier at column i-3
                if (c >= 3) {
                    int cur = g_with_next_col_prefix_max[c-3].back() + weights[c-1][i_1];
                    upMax(f[c][i], cur);
                    upMax(g[c][i], cur);
                }

#undef r
            }
        }
        // }}}

        // aggregate {{{
        // g_prefix_max[c][r] = max(g[c][0], .., g[c][r])
        auto MAX = [] (auto a, auto b) { return std::max(a, b); };
        g_prefix_max[c] = g[c];
        g_suffix_max[c] = g[c];
        std::partial_sum(g[c].begin(), g[c].end(), g_prefix_max[c].begin(), MAX);
        std::partial_sum(g[c].rbegin(), g[c].rend(), g_suffix_max[c].rbegin(), MAX);

        if (c + 1 < n) {
            // g_with_next_col_prefix_max[c][r] = max(
            //     g[c][0] + weights[c+1][0],
            //     ...
            //     g[c][r] + weights[c+1][r])
            g_with_next_col_prefix_max[c] = g[c];
            for (int i = 0; i < (int) g[c].size(); ++i) {
                g_with_next_col_prefix_max[c][i] = g[c][i] + weights[c+1][i];
            }
            g_with_next_col_suffix_max[c] = g_with_next_col_prefix_max[c];

            std::partial_sum(
                    g_with_next_col_prefix_max[c].begin(),
                    g_with_next_col_prefix_max[c].end(),
                    g_with_next_col_prefix_max[c].begin(),
                    MAX);
            std::partial_sum(
                    g_with_next_col_suffix_max[c].rbegin(),
                    g_with_next_col_suffix_max[c].rend(),
                    g_with_next_col_suffix_max[c].rbegin(),
                    MAX);

            f_with_next_col_prefix_max[c] = f[c];
            for (int i = 0; i < (int) f[c].size(); ++i) {
                f_with_next_col_prefix_max[c][i] = f[c][i] - weights[c][i];
            }
            std::partial_sum(
                    f_with_next_col_prefix_max[c].begin(),
                    f_with_next_col_prefix_max[c].end(),
                    f_with_next_col_prefix_max[c].begin(),
                    MAX);
        }
        // }}}
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        int k = fishesAt[c].size();
        for (int i = 0; i < k; ++i) {
            int r = fishesAt[c][i].first;
            int cur = g[c][i];
            if (c + 1 < n) {
                int i_1 = lower_bound(
                        fishesAt[c+1].begin(), fishesAt[c+1].end(), std::make_pair(r+1, -1LL))
                    - fishesAt[c+1].begin();
                --i_1;
                cur += weights[c+1][i_1];
            }
            upMax(res, cur);
        }
    }
    return res;
}

#undef int
long long max_weights(
        int n, int nFish,
        std::vector<int> xs,
        std::vector<int> ys,
        std::vector<int> ws) {
    std::vector<Fish> fishes;
    for (int i = 0; i < nFish; ++i) {
        fishes.push_back({xs[i], ys[i], ws[i]});
    }

    if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) {
        return sub1(fishes);
    }
    if (*std::max_element(xs.begin(), xs.end()) <= 1) {
        return sub2(n, fishes);
    }
    if (*std::max_element(ys.begin(), ys.end()) == 0) {
        return sub3(n, fishes);
    }
    return sub7(n, fishes);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 25 ms 5320 KB Output is correct
2 Correct 30 ms 5816 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 89 ms 19676 KB Output is correct
6 Correct 95 ms 19756 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 53 ms 10380 KB Output is correct
3 Correct 64 ms 11200 KB Output is correct
4 Correct 24 ms 5340 KB Output is correct
5 Correct 39 ms 5820 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 24 ms 5460 KB Output is correct
13 Correct 31 ms 6456 KB Output is correct
14 Correct 27 ms 5472 KB Output is correct
15 Correct 33 ms 6072 KB Output is correct
16 Correct 27 ms 5472 KB Output is correct
17 Correct 31 ms 6076 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 2 ms 1860 KB Output is correct
3 Correct 25 ms 4120 KB Output is correct
4 Correct 21 ms 3656 KB Output is correct
5 Correct 43 ms 6456 KB Output is correct
6 Correct 28 ms 6464 KB Output is correct
7 Correct 31 ms 6456 KB Output is correct
8 Correct 54 ms 6456 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Incorrect 0 ms 212 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Incorrect 0 ms 212 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Incorrect 0 ms 212 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
9 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 2 ms 1860 KB Output is correct
3 Correct 25 ms 4120 KB Output is correct
4 Correct 21 ms 3656 KB Output is correct
5 Correct 43 ms 6456 KB Output is correct
6 Correct 28 ms 6464 KB Output is correct
7 Correct 31 ms 6456 KB Output is correct
8 Correct 54 ms 6456 KB Output is correct
9 Correct 355 ms 132588 KB Output is correct
10 Correct 140 ms 57288 KB Output is correct
11 Correct 300 ms 114116 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 1 ms 256 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Incorrect 0 ms 212 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
18 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 25 ms 5320 KB Output is correct
2 Correct 30 ms 5816 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 89 ms 19676 KB Output is correct
6 Correct 95 ms 19756 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 53 ms 10380 KB Output is correct
9 Correct 64 ms 11200 KB Output is correct
10 Correct 24 ms 5340 KB Output is correct
11 Correct 39 ms 5820 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 24 ms 5460 KB Output is correct
19 Correct 31 ms 6456 KB Output is correct
20 Correct 27 ms 5472 KB Output is correct
21 Correct 33 ms 6072 KB Output is correct
22 Correct 27 ms 5472 KB Output is correct
23 Correct 31 ms 6076 KB Output is correct
24 Correct 0 ms 212 KB Output is correct
25 Correct 2 ms 1860 KB Output is correct
26 Correct 25 ms 4120 KB Output is correct
27 Correct 21 ms 3656 KB Output is correct
28 Correct 43 ms 6456 KB Output is correct
29 Correct 28 ms 6464 KB Output is correct
30 Correct 31 ms 6456 KB Output is correct
31 Correct 54 ms 6456 KB Output is correct
32 Correct 0 ms 212 KB Output is correct
33 Correct 0 ms 212 KB Output is correct
34 Correct 0 ms 212 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 0 ms 212 KB Output is correct
38 Correct 1 ms 212 KB Output is correct
39 Incorrect 0 ms 212 KB 1st lines differ - on the 1st token, expected: '2', found: '1'
40 Halted 0 ms 0 KB -