#include "bits/stdc++.h"
using namespace std;
#define int long long
#define i_1 jakcjacjl
struct Fish {
int col, row;
int weight;
};
bool operator < (const Fish& a, const Fish& b) {
if (a.col != b.col) return a.col < b.col;
return a.row < b.row;
}
void upMax(int& f, int val) {
if (val > f) f = val;
}
// sub1 - 3 {{{
// fishes are on even columns -> build piers on odd columns
// & catch all fishes
int sub1(const std::vector<Fish>& fishes) {
int res = 0;
for (const auto& fish : fishes) {
res += fish.weight;
}
return res;
}
// fishes are on first 2 columns
int sub2(int n, const std::vector<Fish>& fishes) {
std::vector<int> zeroes(n); // prefix sum of fish weights at column == 0
std::vector<int> ones(n); // prefix sum of fish weights at column == 1
for (const auto& fish : fishes) {
if (fish.col == 0) zeroes[fish.row] += fish.weight;
if (fish.col == 1) ones[fish.row] += fish.weight;
}
std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin());
std::partial_sum(ones.begin(), ones.end(), ones.begin());
int res = ones.back(); // init: only catch fishes at column == 1
for (int i = 0; i < n; ++i) {
// build pier until at column 1, row 0-i
if (n == 2) upMax(res, zeroes[i]);
else upMax(res, zeroes[i] + ones.back() - ones[i]);
}
return res;
}
// all fishes are on row == 0
int sub3(int n, const std::vector<Fish>& fishes) {
std::vector<int> weights(n); // weights[i] = weight of fish at column i
for (const auto& fish : fishes) {
weights[fish.col] += fish.weight;
}
// f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i
// i-4 i-3 i-2 i-1 i
std::vector<int> f(n);
f[0] = 0;
for (int i = 1; i < n; ++i) {
f[i] = std::max(f[i-1], weights[i-1]);
if (i >= 2) {
upMax(f[i], f[i-2] + weights[i-1]);
}
if (i >= 3) {
upMax(f[i], f[i-3] + weights[i-2] + weights[i-1]);
}
}
int res = 0;
for (int i = 0; i < n; ++i) {
int cur = f[i];
if (i + 1 < n) cur += weights[i+1];
upMax(res, cur);
}
return res;
}
// }}}
// sub 5 N <= 300 {{{
int sub5(int n, const std::vector<Fish>& fishes) {
// Init weights[i][j] = sum of fish on column i, from row 0 -> row j
std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
for (const auto& fish : fishes) {
weights[fish.col][fish.row] += fish.weight;
}
for (int col = 0; col < n; ++col) {
std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
}
// f[c][r] = best strategy if we last BUILD PIER AT column c, row r
// only considering fishes <= (c, r)
// g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
g(n, std::vector<int> (n, 0));
// f <= g
for (int c = 1; c < n; ++c) {
for (int r = 0; r < n; ++r) {
// this is first pier
f[c][r] = g[c][r] = weights[c-1][r];
// last pier at column i-1
for (int lastRow = 0; lastRow < n; ++lastRow) {
if (lastRow <= r) {
int cur = std::max(
f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
g[c-1][lastRow]);
upMax(f[c][r], cur);
upMax(g[c][r], cur);
} else {
upMax(f[c][r], g[c-1][lastRow]);
upMax(g[c][r], g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
}
}
// last pier at column i-2
if (c >= 2) {
for (int lastRow = 0; lastRow < n; ++lastRow) {
int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)];
upMax(f[c][r], cur);
upMax(g[c][r], cur);
}
}
// last pier at column i-3
if (c >= 3) {
for (int lastRow = 0; lastRow < n; ++lastRow) {
int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r];
upMax(f[c][r], cur);
upMax(g[c][r], cur);
}
}
}
}
int res = 0;
for (int c = 0; c < n; ++c) {
for (int r = 0; r < n; ++r) {
assert(g[c][r] >= f[c][r]);
int cur = g[c][r];
if (c + 1 < n) {
cur += weights[c+1][r];
}
upMax(res, cur);
}
}
return res;
}
// }}}
// N <= 3000 {{{
int sub6(int n, const std::vector<Fish>& fishes) {
// Init weights[i][j] = sum of fish on column i, from row 0 -> row j
std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
for (const auto& fish : fishes) {
weights[fish.col][fish.row] += fish.weight;
}
for (int col = 0; col < n; ++col) {
std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
}
// f[c][r] = best strategy if we last BUILD PIER AT column c, row r
// only considering fishes <= (c, r)
// g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
g(n, std::vector<int> (n, 0)),
g_prefix_max(n, std::vector<int> (n, 0)),
g_suffix_max(n, std::vector<int> (n, 0)),
g_with_next_col_suffix_max(n, std::vector<int> (n, 0)),
g_with_next_col_prefix_max(n, std::vector<int> (n, 0)),
f_with_next_col_prefix_max(n, std::vector<int> (n, 0));
// f <= g
for (int c = 0; c < n; ++c) {
// compute {{{
if (c > 0) {
for (int r = 0; r < n; ++r) {
// this is first pier
f[c][r] = g[c][r] = weights[c-1][r];
// last pier at column i-1
if (c >= 1) {
// last row <= r
int cur = std::max(
g_prefix_max[c-1][r],
f_with_next_col_prefix_max[c-1][r] + weights[c-1][r]);
upMax(f[c][r], cur);
upMax(g[c][r], cur);
// last row > r
if (r + 1 < n) {
upMax(f[c][r], g_suffix_max[c-1][r + 1]);
upMax(g[c][r], g_with_next_col_suffix_max[c-1][r + 1] - weights[c][r]);
}
}
// last pier at column i-2
if (c >= 2) {
int cur = std::max(
g_prefix_max[c-2].back() + weights[c-1][r],
g_with_next_col_prefix_max[c-2].back());
upMax(f[c][r], cur);
upMax(g[c][r], cur);
}
// last pier at column i-3
if (c >= 3) {
int cur = g_with_next_col_prefix_max[c-3].back() + weights[c-1][r];
upMax(f[c][r], cur);
upMax(g[c][r], cur);
}
}
}
// }}}
// aggregate {{{
// g_prefix_max[c][r] = max(g[c][0], .., g[c][r])
auto MAX = [] (auto a, auto b) { return std::max(a, b); };
std::partial_sum(g[c].begin(), g[c].end(), g_prefix_max[c].begin(), MAX);
std::partial_sum(g[c].rbegin(), g[c].rend(), g_suffix_max[c].rbegin(), MAX);
if (c + 1 < n) {
// g_with_next_col_prefix_max[c][r] = max(
// g[c][0] + weights[c+1][0],
// ...
// g[c][r] + weights[c+1][r])
for (int r = 0; r < n; ++r) {
g_with_next_col_prefix_max[c][r] = g[c][r] + weights[c+1][r];
}
g_with_next_col_suffix_max[c] = g_with_next_col_prefix_max[c];
std::partial_sum(
g_with_next_col_prefix_max[c].begin(),
g_with_next_col_prefix_max[c].end(),
g_with_next_col_prefix_max[c].begin(),
MAX);
std::partial_sum(
g_with_next_col_suffix_max[c].rbegin(),
g_with_next_col_suffix_max[c].rend(),
g_with_next_col_suffix_max[c].rbegin(),
MAX);
for (int r = 0; r < n; ++r) {
f_with_next_col_prefix_max[c][r] = f[c][r] - weights[c][r];
}
std::partial_sum(
f_with_next_col_prefix_max[c].begin(),
f_with_next_col_prefix_max[c].end(),
f_with_next_col_prefix_max[c].begin(),
MAX);
}
// }}}
}
int res = 0;
for (int c = 0; c < n; ++c) {
for (int r = 0; r < n; ++r) {
assert(g[c][r] >= f[c][r]);
int cur = g[c][r];
if (c + 1 < n) {
cur += weights[c+1][r];
}
upMax(res, cur);
}
}
return res;
}
// }}}
int sub7(int n, const std::vector<Fish>& fishes) {
// fishesAt[col] = vector storing all fishes at column `col`
std::vector<std::vector<std::pair<int, int>>> fishesAt(n);
std::vector<std::vector<int>> weights(n);
for (const auto& fish : fishes) {
fishesAt[fish.col].push_back({fish.row, fish.weight});
}
for (int c = 0; c < n; ++c) {
fishesAt[c].push_back({-1, 0});
std::sort(fishesAt[c].begin(), fishesAt[c].end());
fishesAt[c].push_back({n, 0});
fishesAt[c].push_back({1000111, 0});
for (auto [row, weight] : fishesAt[c]) {
weights[c].push_back(weight);
}
std::partial_sum(weights[c].begin(), weights[c].end(), weights[c].begin());
}
// f[c][r] = best strategy if we last BUILD PIER AT column c, row r
// only considering fishes <= (c, r)
// g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
std::vector<std::vector<int>> f(n),
g(n),
g_prefix_max(n),
g_suffix_max(n),
g_with_next_col_suffix_max(n),
g_with_next_col_prefix_max(n),
f_with_next_col_prefix_max(n);
for (int c = 0; c < n; ++c) {
// compute {{{
int k = (int) fishesAt[c].size();
f[c].resize(k);
g[c].resize(k);
if (c > 0) {
for (int i = 0; i < k - 1; ++i) { // ignore last
int r = fishesAt[c][i].first;
int i_1 = lower_bound(
fishesAt[c-1].begin(), fishesAt[c-1].end(), std::make_pair(r+1, -1LL))
- fishesAt[c-1].begin();
--i_1;
assert(fishesAt[c-1][i_1].first <= r && fishesAt[c-1][i_1 + 1].first > r);
#define r ajckajcl
// this is first pier
f[c][i] = g[c][i] = weights[c-1][i_1];
// last pier at column i-1
{
// last row <= r
int cur = std::max(
g_prefix_max[c-1][i_1],
f_with_next_col_prefix_max[c-1][i_1] + weights[c-1][i_1]);
upMax(f[c][i], cur);
upMax(g[c][i], cur);
// last row > r
if (i + 1 < k-1) {
upMax(f[c][i], g_suffix_max[c-1][i_1 + 1]);
upMax(g[c][i], g_with_next_col_prefix_max[c-1][i_1 + 1] - weights[c][i]);
}
}
// last pier at column i-2
if (c >= 2) {
int cur = std::max(
g_prefix_max[c-2].back() + weights[c-1][i_1],
g_with_next_col_prefix_max[c-2].back());
upMax(f[c][i], cur);
upMax(g[c][i], cur);
}
// last pier at column i-3
if (c >= 3) {
int cur = g_with_next_col_prefix_max[c-3].back() + weights[c-1][i_1];
upMax(f[c][i], cur);
upMax(g[c][i], cur);
}
#undef r
}
}
// }}}
// aggregate {{{
// g_prefix_max[c][r] = max(g[c][0], .., g[c][r])
auto MAX = [] (auto a, auto b) { return std::max(a, b); };
g_prefix_max[c] = g[c];
g_suffix_max[c] = g[c];
std::partial_sum(g[c].begin(), g[c].end(), g_prefix_max[c].begin(), MAX);
std::partial_sum(g[c].rbegin(), g[c].rend(), g_suffix_max[c].rbegin(), MAX);
if (c + 1 < n) {
// g_with_next_col_prefix_max[c][r] = max(
// g[c][0] + weights[c+1][0],
// ...
// g[c][r] + weights[c+1][r])
g_with_next_col_prefix_max[c] = g[c];
for (int i = 0; i < (int) g[c].size(); ++i) {
g_with_next_col_prefix_max[c][i] = g[c][i] + weights[c+1][i];
}
g_with_next_col_suffix_max[c] = g_with_next_col_prefix_max[c];
std::partial_sum(
g_with_next_col_prefix_max[c].begin(),
g_with_next_col_prefix_max[c].end(),
g_with_next_col_prefix_max[c].begin(),
MAX);
std::partial_sum(
g_with_next_col_suffix_max[c].rbegin(),
g_with_next_col_suffix_max[c].rend(),
g_with_next_col_suffix_max[c].rbegin(),
MAX);
f_with_next_col_prefix_max[c] = f[c];
for (int i = 0; i < (int) f[c].size(); ++i) {
f_with_next_col_prefix_max[c][i] = f[c][i] - weights[c][i];
}
std::partial_sum(
f_with_next_col_prefix_max[c].begin(),
f_with_next_col_prefix_max[c].end(),
f_with_next_col_prefix_max[c].begin(),
MAX);
}
// }}}
}
int res = 0;
for (int c = 0; c < n; ++c) {
int k = fishesAt[c].size();
for (int i = 0; i < k; ++i) {
int r = fishesAt[c][i].first;
int cur = g[c][i];
if (c + 1 < n) {
int i_1 = lower_bound(
fishesAt[c+1].begin(), fishesAt[c+1].end(), std::make_pair(r+1, -1LL))
- fishesAt[c+1].begin();
--i_1;
cur += weights[c+1][i_1];
}
upMax(res, cur);
}
}
return res;
}
#undef int
long long max_weights(
int n, int nFish,
std::vector<int> xs,
std::vector<int> ys,
std::vector<int> ws) {
std::vector<Fish> fishes;
for (int i = 0; i < nFish; ++i) {
fishes.push_back({xs[i], ys[i], ws[i]});
}
if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) {
return sub1(fishes);
}
if (*std::max_element(xs.begin(), xs.end()) <= 1) {
return sub2(n, fishes);
}
if (*std::max_element(ys.begin(), ys.end()) == 0) {
return sub3(n, fishes);
}
return sub7(n, fishes);
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
37 ms |
5312 KB |
Output is correct |
2 |
Correct |
30 ms |
6448 KB |
Output is correct |
3 |
Correct |
0 ms |
212 KB |
Output is correct |
4 |
Correct |
0 ms |
212 KB |
Output is correct |
5 |
Correct |
108 ms |
20988 KB |
Output is correct |
6 |
Correct |
99 ms |
20920 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
212 KB |
Output is correct |
2 |
Correct |
49 ms |
10380 KB |
Output is correct |
3 |
Correct |
66 ms |
12264 KB |
Output is correct |
4 |
Correct |
25 ms |
6368 KB |
Output is correct |
5 |
Correct |
31 ms |
6880 KB |
Output is correct |
6 |
Correct |
0 ms |
212 KB |
Output is correct |
7 |
Correct |
1 ms |
212 KB |
Output is correct |
8 |
Correct |
0 ms |
212 KB |
Output is correct |
9 |
Correct |
1 ms |
212 KB |
Output is correct |
10 |
Correct |
0 ms |
212 KB |
Output is correct |
11 |
Correct |
1 ms |
212 KB |
Output is correct |
12 |
Correct |
32 ms |
6632 KB |
Output is correct |
13 |
Correct |
35 ms |
7532 KB |
Output is correct |
14 |
Correct |
27 ms |
6460 KB |
Output is correct |
15 |
Correct |
31 ms |
7080 KB |
Output is correct |
16 |
Correct |
27 ms |
6460 KB |
Output is correct |
17 |
Correct |
30 ms |
7104 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
212 KB |
Output is correct |
2 |
Correct |
1 ms |
1748 KB |
Output is correct |
3 |
Correct |
16 ms |
4168 KB |
Output is correct |
4 |
Correct |
13 ms |
3672 KB |
Output is correct |
5 |
Correct |
30 ms |
6452 KB |
Output is correct |
6 |
Correct |
23 ms |
6460 KB |
Output is correct |
7 |
Correct |
28 ms |
6456 KB |
Output is correct |
8 |
Correct |
32 ms |
6456 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
232 KB |
1st lines differ - on the 1st token, expected: '3', found: '2' |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
232 KB |
1st lines differ - on the 1st token, expected: '3', found: '2' |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
232 KB |
1st lines differ - on the 1st token, expected: '3', found: '2' |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
212 KB |
Output is correct |
2 |
Correct |
1 ms |
1748 KB |
Output is correct |
3 |
Correct |
16 ms |
4168 KB |
Output is correct |
4 |
Correct |
13 ms |
3672 KB |
Output is correct |
5 |
Correct |
30 ms |
6452 KB |
Output is correct |
6 |
Correct |
23 ms |
6460 KB |
Output is correct |
7 |
Correct |
28 ms |
6456 KB |
Output is correct |
8 |
Correct |
32 ms |
6456 KB |
Output is correct |
9 |
Incorrect |
185 ms |
72620 KB |
1st lines differ - on the 1st token, expected: '99999', found: '66666' |
10 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
37 ms |
5312 KB |
Output is correct |
2 |
Correct |
30 ms |
6448 KB |
Output is correct |
3 |
Correct |
0 ms |
212 KB |
Output is correct |
4 |
Correct |
0 ms |
212 KB |
Output is correct |
5 |
Correct |
108 ms |
20988 KB |
Output is correct |
6 |
Correct |
99 ms |
20920 KB |
Output is correct |
7 |
Correct |
0 ms |
212 KB |
Output is correct |
8 |
Correct |
49 ms |
10380 KB |
Output is correct |
9 |
Correct |
66 ms |
12264 KB |
Output is correct |
10 |
Correct |
25 ms |
6368 KB |
Output is correct |
11 |
Correct |
31 ms |
6880 KB |
Output is correct |
12 |
Correct |
0 ms |
212 KB |
Output is correct |
13 |
Correct |
1 ms |
212 KB |
Output is correct |
14 |
Correct |
0 ms |
212 KB |
Output is correct |
15 |
Correct |
1 ms |
212 KB |
Output is correct |
16 |
Correct |
0 ms |
212 KB |
Output is correct |
17 |
Correct |
1 ms |
212 KB |
Output is correct |
18 |
Correct |
32 ms |
6632 KB |
Output is correct |
19 |
Correct |
35 ms |
7532 KB |
Output is correct |
20 |
Correct |
27 ms |
6460 KB |
Output is correct |
21 |
Correct |
31 ms |
7080 KB |
Output is correct |
22 |
Correct |
27 ms |
6460 KB |
Output is correct |
23 |
Correct |
30 ms |
7104 KB |
Output is correct |
24 |
Correct |
0 ms |
212 KB |
Output is correct |
25 |
Correct |
1 ms |
1748 KB |
Output is correct |
26 |
Correct |
16 ms |
4168 KB |
Output is correct |
27 |
Correct |
13 ms |
3672 KB |
Output is correct |
28 |
Correct |
30 ms |
6452 KB |
Output is correct |
29 |
Correct |
23 ms |
6460 KB |
Output is correct |
30 |
Correct |
28 ms |
6456 KB |
Output is correct |
31 |
Correct |
32 ms |
6456 KB |
Output is correct |
32 |
Incorrect |
1 ms |
232 KB |
1st lines differ - on the 1st token, expected: '3', found: '2' |
33 |
Halted |
0 ms |
0 KB |
- |